Amazon DynamoDB vs PostgreSQL

Get Advice Icon

Need advice about which tool to choose?Ask the StackShare community!

Amazon DynamoDB
Amazon DynamoDB

1.6K
953
+ 1
162
PostgreSQL
PostgreSQL

17K
12.8K
+ 1
3.4K
Add tool

Amazon DynamoDB vs PostgreSQL: What are the differences?

What is Amazon DynamoDB? Fully managed NoSQL database service. All data items are stored on Solid State Drives (SSDs), and are replicated across 3 Availability Zones for high availability and durability. With DynamoDB, you can offload the administrative burden of operating and scaling a highly available distributed database cluster, while paying a low price for only what you use.

What is PostgreSQL? A powerful, open source object-relational database system. PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Amazon DynamoDB and PostgreSQL are primarily classified as "NoSQL Database as a Service" and "Databases" tools respectively.

"Predictable performance and cost" is the primary reason why developers consider Amazon DynamoDB over the competitors, whereas "Relational database" was stated as the key factor in picking PostgreSQL.

PostgreSQL is an open source tool with 5.44K GitHub stars and 1.8K GitHub forks. Here's a link to PostgreSQL's open source repository on GitHub.

According to the StackShare community, PostgreSQL has a broader approval, being mentioned in 2740 company stacks & 2174 developers stacks; compared to Amazon DynamoDB, which is listed in 444 company stacks and 187 developer stacks.

- No public GitHub repository available -

What is Amazon DynamoDB?

With it , you can offload the administrative burden of operating and scaling a highly available distributed database cluster, while paying a low price for only what you use.

What is PostgreSQL?

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.
Get Advice Icon

Need advice about which tool to choose?Ask the StackShare community!

Why do developers choose Amazon DynamoDB?
Why do developers choose PostgreSQL?

Sign up to add, upvote and see more prosMake informed product decisions

Jobs that mention Amazon DynamoDB and PostgreSQL as a desired skillset
OneSignalOneSignal
San Mateo, California
OneSignalOneSignal
San Mateo, California
OneSignalOneSignal
San Mateo, California
What companies use Amazon DynamoDB?
What companies use PostgreSQL?

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Amazon DynamoDB?
What tools integrate with PostgreSQL?

Sign up to get full access to all the tool integrationsMake informed product decisions

What are some alternatives to Amazon DynamoDB and PostgreSQL?
Google Cloud Datastore
Use a managed, NoSQL, schemaless database for storing non-relational data. Cloud Datastore automatically scales as you need it and supports transactions as well as robust, SQL-like queries.
MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.
Amazon SimpleDB
Developers simply store and query data items via web services requests and Amazon SimpleDB does the rest. Behind the scenes, Amazon SimpleDB creates and manages multiple geographically distributed replicas of your data automatically to enable high availability and data durability. Amazon SimpleDB provides a simple web services interface to create and store multiple data sets, query your data easily, and return the results. Your data is automatically indexed, making it easy to quickly find the information that you need. There is no need to pre-define a schema or change a schema if new data is added later. And scale-out is as simple as creating new domains, rather than building out new servers.
MySQL
The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.
Amazon S3
Amazon Simple Storage Service provides a fully redundant data storage infrastructure for storing and retrieving any amount of data, at any time, from anywhere on the web
See all alternatives
Decisions about Amazon DynamoDB and PostgreSQL
Tim Specht
Tim Specht
‎Co-Founder and CTO at Dubsmash · | 13 upvotes · 58.3K views
atDubsmashDubsmash
Amazon RDS for Aurora
Amazon RDS for Aurora
Redis
Redis
Amazon DynamoDB
Amazon DynamoDB
Amazon RDS
Amazon RDS
Heroku
Heroku
PostgreSQL
PostgreSQL
#SqlDatabaseAsAService
#NosqlDatabaseAsAService
#Databases
#PlatformAsAService

Over the years we have added a wide variety of different storages to our stack including PostgreSQL (some hosted by Heroku, some by Amazon RDS) for storing relational data, Amazon DynamoDB to store non-relational data like recommendations & user connections, or Redis to hold pre-aggregated data to speed up API endpoints.

Since we started running Postgres ourselves on RDS instead of only using the managed offerings of Heroku, we've gained additional flexibility in scaling our application while reducing costs at the same time.

We are also heavily testing Amazon RDS for Aurora in its Postgres-compatible version and will also give the new release of Aurora Serverless a try!

#SqlDatabaseAsAService #NosqlDatabaseAsAService #Databases #PlatformAsAService

See more
Dmitry Mukhin
Dmitry Mukhin
at Uploadcare · | 15 upvotes · 59.5K views
atUploadcareUploadcare
PostgreSQL
PostgreSQL
Amazon DynamoDB
Amazon DynamoDB
Amazon S3
Amazon S3
Redis
Redis
Python
Python
Google App Engine
Google App Engine

Uploadcare has built an infinitely scalable infrastructure by leveraging AWS. Building on top of AWS allows us to process 350M daily requests for file uploads, manipulations, and deliveries. When we started in 2011 the only cloud alternative to AWS was Google App Engine which was a no-go for a rather complex solution we wanted to build. We also didn’t want to buy any hardware or use co-locations.

Our stack handles receiving files, communicating with external file sources, managing file storage, managing user and file data, processing files, file caching and delivery, and managing user interface dashboards.

At its core, Uploadcare runs on Python. The Europython 2011 conference in Florence really inspired us, coupled with the fact that it was general enough to solve all of our challenges informed this decision. Additionally we had prior experience working in Python.

We chose to build the main application with Django because of its feature completeness and large footprint within the Python ecosystem.

All the communications within our ecosystem occur via several HTTP APIs, Redis, Amazon S3, and Amazon DynamoDB. We decided on this architecture so that our our system could be scalable in terms of storage and database throughput. This way we only need Django running on top of our database cluster. We use PostgreSQL as our database because it is considered an industry standard when it comes to clustering and scaling.

See more
Anton Sidelnikov
Anton Sidelnikov
Backend Developer at Beamery · | 5 upvotes · 9K views
MongoDB
MongoDB
PostgreSQL
PostgreSQL

In my opinion PostgreSQL is totally over MongoDB - not only works with structured data & SQL & strict types, but also has excellent support for unstructured data as separate data type (you can store arbitrary JSONs - and they may be also queryable, depending on one of format's you may choose). Both writes & reads are much faster, then in Mongo. So you can get best on Document NoSQL & SQL in single database..

Formal downside of PostgreSQL is clustering scalability. There's not simple way to build distributed a cluster. However, two points:

1) You will need much more time before you need to actually scale due to PG's efficiency. And if you follow database-per-service pattern, maybe you won't need ever, cause dealing few billion records on single machine is an option for PG.

2) When you need to - you do it in a way you need, including as a part of app's logic (e.g. sharding by key, or PG-based clustering solution with strict model), scalability will be very transparent, much more obvious than Mongo's "cluster just works (but then fails)" replication.

See more
Tim Nolet
Tim Nolet
Founder, Engineer & Dishwasher at Checkly · | 8 upvotes · 61.6K views
atChecklyHQChecklyHQ
Amazon DynamoDB
Amazon DynamoDB
MongoDB
MongoDB
Node.js
Node.js
Heroku
Heroku
PostgreSQL
PostgreSQL

PostgreSQL Heroku Node.js MongoDB Amazon DynamoDB

When I started building Checkly, one of the first things on the agenda was how to actually structure our SaaS database model: think accounts, users, subscriptions etc. Weirdly, there is not a lot of information on this on the "blogopshere" (cringe...). After research and some false starts with MongoDB and Amazon DynamoDB we ended up with PostgreSQL and a schema consisting of just four tables that form the backbone of all generic "Saasy" stuff almost any B2B SaaS bumps into.

In a nutshell:cPostgreSQL Heroku Node.js MongoDB Amazon DynamoDB

When I started building Checkly, one of the first things on the agenda was how to actually structure our SaaS database model: think accounts, users, subscriptions etc. Weirdly, there is not a lot of information on this on the "blogopshere" (cringe...). After research and some false starts with MongoDB and Amazon DynamoDB we ended up with PostgreSQL and a schema consisting of just four tables that form the backbone of all generic "Saasy" stuff almost any B2B SaaS bumps into.

In a nutshell:

  • We use Postgres on Heroku.
  • We use a "one database, on schema" approach for partitioning customer data.
  • We use an accounts, memberships and users table to create a many-to-many relation between users and accounts.
  • We completely decouple prices, payments and the exact ingredients for a customer's plan.

All the details including a database schema diagram are in the linked blog post.

See more
Łukasz Korecki
Łukasz Korecki
CTO & Co-founder at EnjoyHQ · | 12 upvotes · 39.7K views
atEnjoyHQEnjoyHQ
PostgreSQL
PostgreSQL
MongoDB
MongoDB
RethinkDB
RethinkDB

We initially chose RethinkDB because of the schema-less document store features, and better durability resilience/story than MongoDB In the end, it didn't work out quite as we expected: there's plenty of scalability issues, it's near impossible to run analytical workloads and small community makes working with Rethink a challenge. We're in process of migrating all our workloads to PostgreSQL and hopefully, we will be able to decommission our RethinkDB deployment soon.

See more
Mauro Bennici
Mauro Bennici
CTO at You Are My GUide · | 7 upvotes · 10.6K views
atYou Are My GUideYou Are My GUide
MongoDB
MongoDB
TimescaleDB
TimescaleDB
PostgreSQL
PostgreSQL

PostgreSQL plus TimescaleDB allow us to concentrate the business effort on how to analyze valuable data instead of manage them on IT side. We are now able to ingest thousand of social shares "managed" data without compromise the scalability of the system or the time query. TimescaleDB is transparent to PostgreSQL , so we continue to use the same SQL syntax without any changes. At the same time, because we need to manage few document objects we dismissed the MongoDB cluster.

See more
Fábio Augusto Falavinha
Fábio Augusto Falavinha
PostgreSQL
PostgreSQL
Amazon DynamoDB
Amazon DynamoDB
Amazon RDS for PostgreSQL
Amazon RDS for PostgreSQL

Amazon RDS for PostgreSQL or Amazon DynamoDB? If you need to follow RDBS concepts choose Amazon RDS (PostgreSQL). This choice will guarantee a stable relational database with a great support for years from PostgreSQL Global Development Group. But, you need a great scalable NoSQL database. You can use Amazon DynamoDB. The most important thing about this is that you can use RESTful HTTP API to access data.

See more
Tor Hagemann
Tor Hagemann
at Socotra · | 2 upvotes · 2.2K views
atSocotraSocotra
Amazon DynamoDB
Amazon DynamoDB
PostgreSQL
PostgreSQL
MySQL
MySQL

Much of our data model is relational, which makes MySQL or PostgreSQL (and family) fit the API's we need to build, in order to meet the needs of our customers.

Sometimes the flexibility of a NoSQL store like Amazon DynamoDB is very useful, but the lack of consistency really impacts usability and performance long-term, compared with viable alternatives. At our current scale, we've seen huge benefits from moving some of our tables out of Dynamo and doing more in SQL.

There will always be use cases for NoSQL and key-values stores, but if your model is well understood in your business/industry: relational databases are the way to go after finding product-market fit. Always understand the trade-offs (and a few intimate details) of any data store before you add to your company's stack!

See more
Joseph Irving
Joseph Irving
DevOps Engineer at uSwitch · | 8 upvotes · 7.4K views
atuSwitchuSwitch
Go
Go
PostgreSQL
PostgreSQL
MySQL
MySQL
Kubernetes
Kubernetes
Vault
Vault

At uSwitch we use Vault to generate short lived database credentials for our applications running in Kubernetes. We wanted to move from an environment where we had 100 dbs with a variety of static passwords being shared around to a place where each pod would have credentials that only last for its lifetime.

We chose vault because:

  • It had built in Kubernetes support so we could use service accounts to permission which pods could access which database.

  • A terraform provider so that we could configure both our RDS instances and their vault configuration in one place.

  • A variety of database providers including MySQL/PostgreSQL (our most common dbs).

  • A good api/Go -sdk so that we could build tooling around it to simplify development worfklow.

  • It had other features we would utilise such as PKI

See more
Daniel Quinn
Daniel Quinn
Senior Developer at Workfinder · | 2 upvotes · 23.5K views
atThe Paperless ProjectThe Paperless Project
PostgreSQL
PostgreSQL
SQLite
SQLite

SQLite is a tricky beast. It's great if you're working single-threaded, but a Terrible Idea if you've got more than one concurrent connection. You use it because it's easy to setup, light, and portable (it's just a file).

In Paperless, we've built a self-hosted web application, so it makes sense to standardise on something small & light, and as we don't have to worry about multiple connections (it's just you using the app), it's a perfect fit.

For users wanting to scale Paperless up to a multi-user environment though, we do provide the hooks to switch to PostgreSQL .

See more
Doru Mihai
Doru Mihai
Solution Architect · | 4 upvotes · 454 views
Amazon DynamoDB
Amazon DynamoDB

I use Amazon DynamoDB because it integrates seamlessly with other AWS SaaS solutions and if cost is the primary concern early on, then this will be a better choice when compared to AWS RDS or any other solution that requires the creation of a HA cluster of IaaS components that will cost money just for being there, the costs not being influenced primarily by usage.

See more
Robert Zuber
Robert Zuber
CTO at CircleCI · | 22 upvotes · 169.6K views
atCircleCICircleCI
Amazon S3
Amazon S3
GitHub
GitHub
Redis
Redis
PostgreSQL
PostgreSQL
MongoDB
MongoDB

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more
Martin Johannesson
Martin Johannesson
Senior Software Developer at IT Minds · | 10 upvotes · 15.5K views
atIT MindsIT Minds
AMP
AMP
PWA
PWA
React
React
MongoDB
MongoDB
Next.js
Next.js
GraphQL
GraphQL
Apollo
Apollo
PostgreSQL
PostgreSQL
TypeORM
TypeORM
Node.js
Node.js
TypeScript
TypeScript
#B2B
#Backend
#Serverless

At IT Minds we create customized internal or #B2B web and mobile apps. I have a go to stack that I pitch to our customers consisting of 3 core areas. 1) A data core #backend . 2) A micro #serverless #backend. 3) A user client #frontend.

For the Data Core I create a backend using TypeScript Node.js and with TypeORM connecting to a PostgreSQL Exposing an action based api with Apollo GraphQL

For the micro serverless backend, which purpose is verification for authentication, autorization, logins and the likes. It is created with Next.js api pages. Using MongoDB to store essential information, caching etc.

Finally the frontend is built with React using Next.js , TypeScript and @Apollo. We create the frontend as a PWA and have a AMP landing page by default.

See more
Jelena Dedovic
Jelena Dedovic
MSSQL
MSSQL
PostgreSQL
PostgreSQL
AIOHTTP
AIOHTTP
asyncio
asyncio
Tornado
Tornado

Investigating Tortoise ORM and GINO ORM...

I need to introduce some async ORM with the current stack: Tornado with asyncio loop, AIOHTTP, with PostgreSQL and MSSQL. This project revolves heavily around realtime and due to the realtime requirements, blocking during database access is not acceptable.

Considering that these ORMs are both young projects, I wondered if anybody had some experience with similar stack and these async ORMs?

See more
Nicolas Apx
Nicolas Apx
CEO - FullStack Javascript at Apx Development Limited · | 14 upvotes · 17.9K views
atAPX DevelopmentAPX Development
PostgreSQL
PostgreSQL
MongoDB
MongoDB
Node.js
Node.js
Python
Python

I am planning on building a micro-service eCommerce back-end to be easy to reuse in any project as we need. I would like to use both Python and Node.js and MongoDB & PostgreSQL , in your opinion which one would best suited for the following services:

  • Users-service
  • Products-service
  • Auth-service
  • Inventory-service
  • Order-service
  • Payment-service
  • Sku-service
  • And more not yet defined....

Thanks

Nicolas

See more
Interest over time
Reviews of Amazon DynamoDB and PostgreSQL
No reviews found
How developers use Amazon DynamoDB and PostgreSQL
Avatar of AngeloR
AngeloR uses PostgreSQLPostgreSQL

We use postgresql for the merge between sql/nosql. A lot of our data is unstructured JSON, or JSON that is currently in flux due to some MVP/interation processes that are going on. PostgreSQL gives the capability to do this.

At the moment PostgreSQL on amazon is only at 9.5 which is one minor version down from support for document fragment updates which is something that we are waiting for. However, that may be some ways away.

Other than that, we are using PostgreSQL as our main SQL store as a replacement for all the MSSQL databases that we have. Not only does it have great support through RDS (small ops team), but it also has some great ways for us to migrate off RDS to managed EC2 instances down the line if we need to.

Avatar of Cloudcraft
Cloudcraft uses PostgreSQLPostgreSQL

PostgreSQL combines the best aspects of traditional SQL databases such as reliability, consistent performance, transactions, querying power, etc. with the flexibility of schemaless noSQL systems that are all the rage these days. Through the powerful JSON column types and indexes, you can now have your cake and eat it too! PostgreSQL may seem a bit arcane and old fashioned at first, but the developers have clearly shown that they understand databases and the storage trends better than almost anyone else. It definitely deserves to be part of everyone's toolbox; when you find yourself needing rock solid performance, operational simplicity and reliability, reach for PostgresQL.

Avatar of Brandon Adams
Brandon Adams uses PostgreSQLPostgreSQL

Relational data stores solve a lot of problems reasonably well. Postgres has some data types that are really handy such as spatial, json, and a plethora of useful dates and integers. It has good availability of indexing solutions, and is well-supported for both custom modifications as well as hosting options (I like Amazon's Postgres for RDS). I use HoneySQL for Clojure as a composable AST that translates reliably to SQL. I typically use JDBC on Clojure, usually via org.clojure/java.jdbc.

Avatar of Karma
Karma uses Amazon DynamoDBAmazon DynamoDB

For most of the stuff we use MySQL. We just use Amazon RDS. But for some stuff we use Amazon DynamoDB. We love DynamoDB. It's amazing. We store usage data in there, for example. I think we have close to seven or eight hundred million records in there and it's scaled like you don't even notice it. You never notice any performance degradation whatsoever. It's insane, and the last time I checked we were paying $150 bucks for that.

Avatar of Volkan Özçelik
Volkan Özçelik uses Amazon DynamoDBAmazon DynamoDB

zerotoherojs.com ’s userbase, and course details are stored in DynamoDB tables.

The good thing about AWS DynamoDB is: For the amount of traffic that I have, it is free. It is highly-scalable, it is managed by Amazon, and it is pretty fast.

It is, again, one less thing to worry about (when compared to managing your own MongoDB elsewhere).

Avatar of ReviewTrackers
ReviewTrackers uses PostgreSQLPostgreSQL

PostgreSQL is responsible for nearly all data storage, validation and integrity. We leverage constraints, functions and custom extensions to ensure we have only one source of truth for our data access rules and that those rules live as close to the data as possible. Call us crazy, but ORMs only lead to ruin and despair.

Avatar of CloudRepo
CloudRepo uses Amazon DynamoDBAmazon DynamoDB

We store customer metadata in DynamoDB. We decided to use Amazon DynamoDB because it was a fully managed, highly available solution. We didn't want to operate our own SQL server and we wanted to ensure that we built CloudRepo on high availability components so that we could pass that benefit back to our customers.

Avatar of Jeff Flynn
Jeff Flynn uses PostgreSQLPostgreSQL

Tried MongoDB - early euphoria - later dread. Tried MySQL - not bad at all. Found PostgreSQL - will never go back. So much support for this it should be your first choice. Simple local (free) installation, and one-click setup in Heroku - lots of options in terms of pricing/performance combinations.

Avatar of nrise
nrise uses Amazon DynamoDBAmazon DynamoDB

몇몇 로그는 현재 AWS DynamoDB 에 기록되고 있습니다. 개선을 통해 mongodb 로 옮길 계획을 하고 있습니다. 아주 간단한 데이터를 쌓는 용도로는 나쁘지 않습니다. 다만, 쿼리가 아주 제한적입니다. 사용하기 전에 반드시 DynamoDB 의 스펙을 확인할 필요가 있습니다.

Avatar of HyperTrack
HyperTrack uses Amazon DynamoDBAmazon DynamoDB

To store device health records as it allows super fast writes and range queries.

How much does Amazon DynamoDB cost?
How much does PostgreSQL cost?
Pricing unavailable