StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Relational Databases
  4. Postgresql As A Service
  5. Amazon RDS for PostgreSQL vs Apache Spark

Amazon RDS for PostgreSQL vs Apache Spark

OverviewDecisionsComparisonAlternatives

Overview

Amazon RDS for PostgreSQL
Amazon RDS for PostgreSQL
Stacks814
Followers607
Votes40
Apache Spark
Apache Spark
Stacks3.1K
Followers3.5K
Votes140
GitHub Stars42.2K
Forks28.9K

Amazon RDS for PostgreSQL vs Apache Spark: What are the differences?

Developers describe Amazon RDS for PostgreSQL as "* Set up, operate, and scale PostgreSQL deployments in the cloud*". Amazon RDS manages complex and time-consuming administrative tasks such as PostgreSQL software installation and upgrades, storage management, replication for high availability and back-ups for disaster recovery. With just a few clicks in the AWS Management Console, you can deploy a PostgreSQL database with automatically configured database parameters for optimal performance. Amazon RDS for PostgreSQL database instances can be provisioned with either standard storage or Provisioned IOPS storage. Once provisioned, you can scale from 10GB to 3TB of storage and from 1,000 IOPS to 30,000 IOPS. On the other hand, Apache Spark is detailed as "Fast and general engine for large-scale data processing". Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Amazon RDS for PostgreSQL and Apache Spark are primarily classified as "PostgreSQL as a Service" and "Big Data" tools respectively.

Some of the features offered by Amazon RDS for PostgreSQL are:

  • Monitoring and Metrics –Amazon RDS provides Amazon CloudWatch metrics for you DB Instance deployments at no additional charge.
  • DB Event Notifications –Amazon RDS provides Amazon SNS notifications via email or SMS for your DB Instance deployments.
  • Automatic Software Patching – Amazon RDS will make sure that the PostgreSQL software powering your deployment stays up-to-date with the latest patches.

On the other hand, Apache Spark provides the following key features:

  • Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk
  • Write applications quickly in Java, Scala or Python
  • Combine SQL, streaming, and complex analytics

"Easy setup, backup, monitoring" is the top reason why over 22 developers like Amazon RDS for PostgreSQL, while over 45 developers mention "Open-source" as the leading cause for choosing Apache Spark.

Apache Spark is an open source tool with 22.5K GitHub stars and 19.4K GitHub forks. Here's a link to Apache Spark's open source repository on GitHub.

According to the StackShare community, Apache Spark has a broader approval, being mentioned in 266 company stacks & 112 developers stacks; compared to Amazon RDS for PostgreSQL, which is listed in 167 company stacks and 29 developer stacks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon RDS for PostgreSQL, Apache Spark

Nilesh
Nilesh

Technical Architect at Self Employed

Jul 8, 2020

Needs adviceonElasticsearchElasticsearchKafkaKafka

We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.

In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.

In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.

576k views576k
Comments
Lonnie
Lonnie

CEO - Co-founder US, Mexico Binational Tech Start-up Accelerator, Incubator at Framework Science

May 9, 2019

ReviewonAmazon DynamoDBAmazon DynamoDBAmazon RDS for PostgreSQLAmazon RDS for PostgreSQL

We use Amazon RDS for PostgreSQL because RDS and Amazon DynamoDB are two distinct database systems. DynamoDB is NoSQL DB whereas RDS is a relational database on the cloud. The pricing will mainly differ in the type of application you are using and your requirements. For some applications, both DynamoDB and RDS, can serve well, for some it might not. I do not think DynamoDB is cheaper. Right now we are helping Companies in Silicon Valley and in Southern California go SERVERLESS - drastically lowering costs if you are interested in hearing how we go about it.

9.18k views9.18k
Comments
Jorge
Jorge

Jan 15, 2020

Needs advice

Considering moving part of our PostgreSQL database infrastructure to the cloud, however, not quite sure between AWS, Heroku, Azure and Google cloud. Things to consider: The main reason is for backing up and centralize all our data in the cloud. With that in mind the main elements are: -Pricing for storage. -Small team. -No need for high throughput. -Support for docker swarm and Kubernetes.

51.8k views51.8k
Comments

Detailed Comparison

Amazon RDS for PostgreSQL
Amazon RDS for PostgreSQL
Apache Spark
Apache Spark

Amazon RDS manages complex and time-consuming administrative tasks such as PostgreSQL software installation and upgrades, storage management, replication for high availability and back-ups for disaster recovery. With just a few clicks in the AWS Management Console, you can deploy a PostgreSQL database with automatically configured database parameters for optimal performance. Amazon RDS for PostgreSQL database instances can be provisioned with either standard storage or Provisioned IOPS storage. Once provisioned, you can scale from 10GB to 3TB of storage and from 1,000 IOPS to 30,000 IOPS.

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Monitoring and Metrics –Amazon RDS provides Amazon CloudWatch metrics for you DB Instance deployments at no additional charge.;DB Event Notifications –Amazon RDS provides Amazon SNS notifications via email or SMS for your DB Instance deployments.;Automatic Software Patching – Amazon RDS will make sure that the PostgreSQL software powering your deployment stays up-to-date with the latest patches.;Automated Backups – Turned on by default, the automated backup feature of Amazon RDS enables point-in-time recovery for your DB Instance.;DB Snapshots – DB Snapshots are user-initiated backups of your DB Instance.;Pre-configured Parameters – Amazon RDS for PostgreSQL deployments are pre-configured with a sensible set of parameters and settings appropriate for the DB Instance class you have selected.;PostGIS;Language Extensions :PL/Perl, PL/pgSQL, PL/Tcl;Full Text Search Dictionaries;Advanced Data Types : HStore, JSON;Core PostgreSQL engine features
Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk;Write applications quickly in Java, Scala or Python;Combine SQL, streaming, and complex analytics;Spark runs on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including HDFS, Cassandra, HBase, S3
Statistics
GitHub Stars
-
GitHub Stars
42.2K
GitHub Forks
-
GitHub Forks
28.9K
Stacks
814
Stacks
3.1K
Followers
607
Followers
3.5K
Votes
40
Votes
140
Pros & Cons
Pros
  • 25
    Easy setup, backup, monitoring
  • 13
    Geospatial support
  • 2
    Master-master replication using Multi-AZ instance
Pros
  • 61
    Open-source
  • 48
    Fast and Flexible
  • 8
    One platform for every big data problem
  • 8
    Great for distributed SQL like applications
  • 6
    Easy to install and to use
Cons
  • 4
    Speed

What are some alternatives to Amazon RDS for PostgreSQL, Apache Spark?

Presto

Presto

Distributed SQL Query Engine for Big Data

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Heroku Postgres

Heroku Postgres

Heroku Postgres provides a SQL database-as-a-service that lets you focus on building your application instead of messing around with database management.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Druid

Druid

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Apache Kylin

Apache Kylin

Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.

Splunk

Splunk

It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.

Apache Impala

Apache Impala

Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time.

Vertica

Vertica

It provides a best-in-class, unified analytics platform that will forever be independent from underlying infrastructure.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase