StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Infrastructure as a Service
  4. Cloud Storage
  5. Amazon RDS vs Amazon Redshift vs Amazon S3

Amazon RDS vs Amazon Redshift vs Amazon S3

OverviewDecisionsComparisonAlternatives

Overview

Amazon S3
Amazon S3
Stacks55.1K
Followers40.2K
Votes2.0K
Amazon RDS
Amazon RDS
Stacks16.1K
Followers10.8K
Votes761
Amazon Redshift
Amazon Redshift
Stacks1.5K
Followers1.4K
Votes108

Amazon RDS vs Amazon Redshift vs Amazon S3: What are the differences?

Introduction

In this Markdown code, we will outline the key differences between Amazon RDS, Amazon Redshift, and Amazon S3 in a website-friendly format.

  1. Deployment and Use Case: Amazon RDS is a relational database service suitable for OLTP workloads, while Amazon Redshift is a data warehousing service optimized for OLAP workloads. On the other hand, Amazon S3 is an object storage service ideal for storing and retrieving large amounts of unstructured data.

  2. Scalability: Amazon RDS allows you to scale vertically by upgrading to a larger instance, while Amazon Redshift and Amazon S3 support horizontal scaling for handling increased workloads and large amounts of data.

  3. Data Structure and Querying: Amazon RDS supports relational database structures and SQL querying, making it suitable for transactional applications. Amazon Redshift is designed for analyzing large datasets using SQL queries optimized for data warehousing. Amazon S3, as an object storage service, does not have built-in querying capabilities, requiring the use of additional tools or services for data analysis.

  4. Performance: Amazon Redshift offers high-performance analytics with massively parallel processing (MPP), columnar storage, and data compression techniques. Amazon RDS can provide good performance for OLTP workloads but may not be optimized for data warehousing tasks. Amazon S3 is designed for high scalability and availability but may not offer the same level of performance as specialized data warehouse solutions like Amazon Redshift.

  5. Data Durability and Cost: Amazon S3 offers a durable storage solution with data redundancy across multiple facilities and resilient data protection mechanisms. Amazon RDS and Amazon Redshift also provide data durability but may incur higher costs for storage and data processing, especially for large-scale data warehousing operations.

  6. Management and Maintenance: Amazon RDS manages routine database tasks such as patching, backups, and monitoring, easing the burden of database administration. Amazon Redshift requires more in-depth management for data warehousing tasks, including data distribution and optimization for query performance. Amazon S3 simplifies data storage and retrieval but may involve more manual management for data organization and access control.

In Summary, the key differences between Amazon RDS, Amazon Redshift, and Amazon S3 lie in their deployment, scalability, data structures, performance, cost, and management approaches for different types of workloads and data processing tasks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon S3, Amazon RDS, Amazon Redshift

datocrats-org
datocrats-org

Jul 29, 2020

Needs adviceonAmazon EC2Amazon EC2TableauTableauPowerBIPowerBI

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

319k views319k
Comments
Mohammad
Mohammad

Aug 30, 2020

Needs adviceonBackblaze B2 Cloud StorageBackblaze B2 Cloud StoragePHPPHPLaravelLaravel

Hello! I have a mobile app with nearly 100k MAU, and I want to add a cloud file storage service to my app.

My app will allow users to store their image, video, and audio files and retrieve them to their device when necessary.

I have already decided to use PHP & Laravel as my backend, and I use Contabo VPS. Now, I need an object storage service for my app, and my options are:

  • Amazon S3 : It sounds to me like the best option but the most expensive. Closest to my users (MENA Region) for other services, I will have to go to Europe. Not sure how important this is?

  • DigitalOcean Spaces : Seems like my best option for price/service, but I am still not sure

  • Wasabi: the best price (6 USD/MONTH/TB) and free bandwidth, but I am not sure if it fits my needs as I want to allow my users to preview audio and video files. They don't recommend their service for streaming videos.

  • Backblaze B2 Cloud Storage: Good price but not sure about them.

  • There is also the self-hosted s3 compatible option, but I am not sure about that.

Any thoughts will be helpful. Also, if you think I should post in a different sub, please tell me.

180k views180k
Comments
Julien
Julien

CTO at Hawk

Sep 19, 2020

Decided

Cloud Data-warehouse is the centerpiece of modern Data platform. The choice of the most suitable solution is therefore fundamental.

Our benchmark was conducted over BigQuery and Snowflake. These solutions seem to match our goals but they have very different approaches.

BigQuery is notably the only 100% serverless cloud data-warehouse, which requires absolutely NO maintenance: no re-clustering, no compression, no index optimization, no storage management, no performance management. Snowflake requires to set up (paid) reclustering processes, to manage the performance allocated to each profile, etc. We can also mention Redshift, which we have eliminated because this technology requires even more ops operation.

BigQuery can therefore be set up with almost zero cost of human resources. Its on-demand pricing is particularly adapted to small workloads. 0 cost when the solution is not used, only pay for the query you're running. But quickly the use of slots (with monthly or per-minute commitment) will drastically reduce the cost of use. We've reduced by 10 the cost of our nightly batches by using flex slots.

Finally, a major advantage of BigQuery is its almost perfect integration with Google Cloud Platform services: Cloud functions, Dataflow, Data Studio, etc.

BigQuery is still evolving very quickly. The next milestone, BigQuery Omni, will allow to run queries over data stored in an external Cloud platform (Amazon S3 for example). It will be a major breakthrough in the history of cloud data-warehouses. Omni will compensate a weakness of BigQuery: transferring data in near real time from S3 to BQ is not easy today. It was even simpler to implement via Snowflake's Snowpipe solution.

We also plan to use the Machine Learning features built into BigQuery to accelerate our deployment of Data-Science-based projects. An opportunity only offered by the BigQuery solution

193k views193k
Comments

Detailed Comparison

Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
Amazon Redshift
Amazon Redshift

Amazon Simple Storage Service provides a fully redundant data storage infrastructure for storing and retrieving any amount of data, at any time, from anywhere on the web

Amazon RDS gives you access to the capabilities of a familiar MySQL, Oracle or Microsoft SQL Server database engine. This means that the code, applications, and tools you already use today with your existing databases can be used with Amazon RDS. Amazon RDS automatically patches the database software and backs up your database, storing the backups for a user-defined retention period and enabling point-in-time recovery. You benefit from the flexibility of being able to scale the compute resources or storage capacity associated with your Database Instance (DB Instance) via a single API call.

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Write, read, and delete objects containing from 1 byte to 5 terabytes of data each. The number of objects you can store is unlimited.;Each object is stored in a bucket and retrieved via a unique, developer-assigned key.;A bucket can be stored in one of several Regions. You can choose a Region to optimize for latency, minimize costs, or address regulatory requirements. Amazon S3 is currently available in the US Standard, US West (Oregon), US West (Northern California), EU (Ireland), Asia Pacific (Singapore), Asia Pacific (Tokyo), Asia Pacific (Sydney), South America (Sao Paulo), and GovCloud (US) Regions. The US Standard Region automatically routes requests to facilities in Northern Virginia or the Pacific Northwest using network maps.;Objects stored in a Region never leave the Region unless you transfer them out. For example, objects stored in the EU (Ireland) Region never leave the EU.;Authentication mechanisms are provided to ensure that data is kept secure from unauthorized access. Objects can be made private or public, and rights can be granted to specific users.;Options for secure data upload/download and encryption of data at rest are provided for additional data protection.;Uses standards-based REST and SOAP interfaces designed to work with any Internet-development toolkit.;Built to be flexible so that protocol or functional layers can easily be added. The default download protocol is HTTP. A BitTorrent protocol interface is provided to lower costs for high-scale distribution.;Provides functionality to simplify manageability of data through its lifetime. Includes options for segregating data by buckets, monitoring and controlling spend, and automatically archiving data to even lower cost storage options. These options can be easily administered from the Amazon S3 Management Console.;Reliability backed with the Amazon S3 Service Level Agreement.
Pre-configured Parameters;Monitoring and Metrics;Automatic Software Patching;Automated Backups;DB Snapshots;DB Event Notifications;Multi-Availability Zone (Multi-AZ) Deployments;Provisioned IOPS;Push-Button Scaling;Automatic Host Replacement;Replication;Isolation and Security
Optimized for Data Warehousing- It uses columnar storage, data compression, and zone maps to reduce the amount of IO needed to perform queries. Redshift has a massively parallel processing (MPP) architecture, parallelizing and distributing SQL operations to take advantage of all available resources.;Scalable- With a few clicks of the AWS Management Console or a simple API call, you can easily scale the number of nodes in your data warehouse up or down as your performance or capacity needs change.;No Up-Front Costs- You pay only for the resources you provision. You can choose On-Demand pricing with no up-front costs or long-term commitments, or obtain significantly discounted rates with Reserved Instance pricing.;Fault Tolerant- Amazon Redshift has multiple features that enhance the reliability of your data warehouse cluster. All data written to a node in your cluster is automatically replicated to other nodes within the cluster and all data is continuously backed up to Amazon S3.;SQL - Amazon Redshift is a SQL data warehouse and uses industry standard ODBC and JDBC connections and Postgres drivers.;Isolation - Amazon Redshift enables you to configure firewall rules to control network access to your data warehouse cluster.;Encryption – With just a couple of parameter settings, you can set up Amazon Redshift to use SSL to secure data in transit and hardware-acccelerated AES-256 encryption for data at rest.<br>
Statistics
Stacks
55.1K
Stacks
16.1K
Stacks
1.5K
Followers
40.2K
Followers
10.8K
Followers
1.4K
Votes
2.0K
Votes
761
Votes
108
Pros & Cons
Pros
  • 590
    Reliable
  • 492
    Scalable
  • 456
    Cheap
  • 329
    Simple & easy
  • 83
    Many sdks
Cons
  • 7
    Permissions take some time to get right
  • 6
    Requires a credit card
  • 6
    Takes time/work to organize buckets & folders properly
  • 3
    Complex to set up
Pros
  • 165
    Reliable failovers
  • 156
    Automated backups
  • 130
    Backed by amazon
  • 92
    Db snapshots
  • 87
    Multi-availability
Pros
  • 41
    Data Warehousing
  • 27
    Scalable
  • 17
    SQL
  • 14
    Backed by Amazon
  • 5
    Encryption
Integrations
No integrations availableNo integrations available
SQLite
SQLite
MySQL
MySQL
Oracle PL/SQL
Oracle PL/SQL

What are some alternatives to Amazon S3, Amazon RDS, Amazon Redshift?

Google BigQuery

Google BigQuery

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

Amazon EBS

Amazon EBS

Amazon EBS volumes are network-attached, and persist independently from the life of an instance. Amazon EBS provides highly available, highly reliable, predictable storage volumes that can be attached to a running Amazon EC2 instance and exposed as a device within the instance. Amazon EBS is particularly suited for applications that require a database, file system, or access to raw block level storage.

Google Cloud Storage

Google Cloud Storage

Google Cloud Storage allows world-wide storing and retrieval of any amount of data and at any time. It provides a simple programming interface which enables developers to take advantage of Google's own reliable and fast networking infrastructure to perform data operations in a secure and cost effective manner. If expansion needs arise, developers can benefit from the scalability provided by Google's infrastructure.

Qubole

Qubole

Qubole is a cloud based service that makes big data easy for analysts and data engineers.

Amazon Aurora

Amazon Aurora

Amazon Aurora is a MySQL-compatible, relational database engine that combines the speed and availability of high-end commercial databases with the simplicity and cost-effectiveness of open source databases. Amazon Aurora provides up to five times better performance than MySQL at a price point one tenth that of a commercial database while delivering similar performance and availability.

Amazon EMR

Amazon EMR

It is used in a variety of applications, including log analysis, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics.

Azure Storage

Azure Storage

Azure Storage provides the flexibility to store and retrieve large amounts of unstructured data, such as documents and media files with Azure Blobs; structured nosql based data with Azure Tables; reliable messages with Azure Queues, and use SMB based Azure Files for migrating on-premises applications to the cloud.

Google Cloud SQL

Google Cloud SQL

Run the same relational databases you know with their rich extension collections, configuration flags and developer ecosystem, but without the hassle of self management.

Minio

Minio

Minio is an object storage server compatible with Amazon S3 and licensed under Apache 2.0 License

OpenEBS

OpenEBS

OpenEBS allows you to treat your persistent workload containers, such as DBs on containers, just like other containers. OpenEBS itself is deployed as just another container on your host.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase