StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data As A Service
  5. Amazon Redshift vs Google Cloud SQL

Amazon Redshift vs Google Cloud SQL

OverviewDecisionsComparisonAlternatives

Overview

Amazon Redshift
Amazon Redshift
Stacks1.5K
Followers1.4K
Votes108
Google Cloud SQL
Google Cloud SQL
Stacks555
Followers580
Votes46

Amazon Redshift vs Google Cloud SQL: What are the differences?

Developers describe Amazon Redshift as "Fast, fully managed, petabyte-scale data warehouse service". Redshift makes it simple and cost-effective to efficiently analyze all your data using your existing business intelligence tools. It is optimized for datasets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions. On the other hand, Google Cloud SQL is detailed as "Store and manage data using a fully-managed, relational MySQL database". MySQL databases deployed in the cloud without a fuss. Google Cloud Platform provides you with powerful databases that run fast, don’t run out of space and give your application the redundant, reliable storage it needs.

Amazon Redshift belongs to "Big Data as a Service" category of the tech stack, while Google Cloud SQL can be primarily classified under "SQL Database as a Service".

Some of the features offered by Amazon Redshift are:

  • Optimized for Data Warehousing- It uses columnar storage, data compression, and zone maps to reduce the amount of IO needed to perform queries. Redshift has a massively parallel processing (MPP) architecture, parallelizing and distributing SQL operations to take advantage of all available resources.
  • Scalable- With a few clicks of the AWS Management Console or a simple API call, you can easily scale the number of nodes in your data warehouse up or down as your performance or capacity needs change.
  • No Up-Front Costs- You pay only for the resources you provision. You can choose On-Demand pricing with no up-front costs or long-term commitments, or obtain significantly discounted rates with Reserved Instance pricing.

On the other hand, Google Cloud SQL provides the following key features:

  • Familiar Infrastructure
  • Flexible Charging
  • Security, Availability, Durability

"Data Warehousing" is the primary reason why developers consider Amazon Redshift over the competitors, whereas "Fully managed" was stated as the key factor in picking Google Cloud SQL.

Lyft, Coursera, and 9GAG are some of the popular companies that use Amazon Redshift, whereas Google Cloud SQL is used by Policygenius, Implisit, and OTOBANK. Amazon Redshift has a broader approval, being mentioned in 269 company stacks & 67 developers stacks; compared to Google Cloud SQL, which is listed in 73 company stacks and 28 developer stacks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon Redshift, Google Cloud SQL

datocrats-org
datocrats-org

Jul 29, 2020

Needs adviceonAmazon EC2Amazon EC2TableauTableauPowerBIPowerBI

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

319k views319k
Comments
Julien
Julien

CTO at Hawk

Sep 19, 2020

Decided

Cloud Data-warehouse is the centerpiece of modern Data platform. The choice of the most suitable solution is therefore fundamental.

Our benchmark was conducted over BigQuery and Snowflake. These solutions seem to match our goals but they have very different approaches.

BigQuery is notably the only 100% serverless cloud data-warehouse, which requires absolutely NO maintenance: no re-clustering, no compression, no index optimization, no storage management, no performance management. Snowflake requires to set up (paid) reclustering processes, to manage the performance allocated to each profile, etc. We can also mention Redshift, which we have eliminated because this technology requires even more ops operation.

BigQuery can therefore be set up with almost zero cost of human resources. Its on-demand pricing is particularly adapted to small workloads. 0 cost when the solution is not used, only pay for the query you're running. But quickly the use of slots (with monthly or per-minute commitment) will drastically reduce the cost of use. We've reduced by 10 the cost of our nightly batches by using flex slots.

Finally, a major advantage of BigQuery is its almost perfect integration with Google Cloud Platform services: Cloud functions, Dataflow, Data Studio, etc.

BigQuery is still evolving very quickly. The next milestone, BigQuery Omni, will allow to run queries over data stored in an external Cloud platform (Amazon S3 for example). It will be a major breakthrough in the history of cloud data-warehouses. Omni will compensate a weakness of BigQuery: transferring data in near real time from S3 to BQ is not easy today. It was even simpler to implement via Snowflake's Snowpipe solution.

We also plan to use the Machine Learning features built into BigQuery to accelerate our deployment of Data-Science-based projects. An opportunity only offered by the BigQuery solution

193k views193k
Comments

Detailed Comparison

Amazon Redshift
Amazon Redshift
Google Cloud SQL
Google Cloud SQL

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Run the same relational databases you know with their rich extension collections, configuration flags and developer ecosystem, but without the hassle of self management.

Optimized for Data Warehousing- It uses columnar storage, data compression, and zone maps to reduce the amount of IO needed to perform queries. Redshift has a massively parallel processing (MPP) architecture, parallelizing and distributing SQL operations to take advantage of all available resources.;Scalable- With a few clicks of the AWS Management Console or a simple API call, you can easily scale the number of nodes in your data warehouse up or down as your performance or capacity needs change.;No Up-Front Costs- You pay only for the resources you provision. You can choose On-Demand pricing with no up-front costs or long-term commitments, or obtain significantly discounted rates with Reserved Instance pricing.;Fault Tolerant- Amazon Redshift has multiple features that enhance the reliability of your data warehouse cluster. All data written to a node in your cluster is automatically replicated to other nodes within the cluster and all data is continuously backed up to Amazon S3.;SQL - Amazon Redshift is a SQL data warehouse and uses industry standard ODBC and JDBC connections and Postgres drivers.;Isolation - Amazon Redshift enables you to configure firewall rules to control network access to your data warehouse cluster.;Encryption – With just a couple of parameter settings, you can set up Amazon Redshift to use SSL to secure data in transit and hardware-acccelerated AES-256 encryption for data at rest.<br>
Familiar Infrastructure;Flexible Charging;Security, Availability, Durability;Easier Migration; No Lock-in;Fully managed
Statistics
Stacks
1.5K
Stacks
555
Followers
1.4K
Followers
580
Votes
108
Votes
46
Pros & Cons
Pros
  • 41
    Data Warehousing
  • 27
    Scalable
  • 17
    SQL
  • 14
    Backed by Amazon
  • 5
    Encryption
Pros
  • 13
    Fully managed
  • 10
    SQL
  • 10
    Backed by Google
  • 4
    Flexible
  • 3
    Automatic Software Patching
Integrations
SQLite
SQLite
MySQL
MySQL
Oracle PL/SQL
Oracle PL/SQL
No integrations available

What are some alternatives to Amazon Redshift, Google Cloud SQL?

Amazon RDS

Amazon RDS

Amazon RDS gives you access to the capabilities of a familiar MySQL, Oracle or Microsoft SQL Server database engine. This means that the code, applications, and tools you already use today with your existing databases can be used with Amazon RDS. Amazon RDS automatically patches the database software and backs up your database, storing the backups for a user-defined retention period and enabling point-in-time recovery. You benefit from the flexibility of being able to scale the compute resources or storage capacity associated with your Database Instance (DB Instance) via a single API call.

Google BigQuery

Google BigQuery

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

Qubole

Qubole

Qubole is a cloud based service that makes big data easy for analysts and data engineers.

Amazon Aurora

Amazon Aurora

Amazon Aurora is a MySQL-compatible, relational database engine that combines the speed and availability of high-end commercial databases with the simplicity and cost-effectiveness of open source databases. Amazon Aurora provides up to five times better performance than MySQL at a price point one tenth that of a commercial database while delivering similar performance and availability.

Amazon EMR

Amazon EMR

It is used in a variety of applications, including log analysis, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics.

ClearDB

ClearDB

ClearDB uses a combination of advanced replication techniques, advanced cluster technology, and layered web services to provide you with a MySQL database that is "smarter" than usual.

Altiscale

Altiscale

we run Apache Hadoop for you. We not only deploy Hadoop, we monitor, manage, fix, and update it for you. Then we take it a step further: We monitor your jobs, notify you when something’s wrong with them, and can help with tuning.

Snowflake

Snowflake

Snowflake eliminates the administration and management demands of traditional data warehouses and big data platforms. Snowflake is a true data warehouse as a service running on Amazon Web Services (AWS)—no infrastructure to manage and no knobs to turn.

Azure SQL Database

Azure SQL Database

It is the intelligent, scalable, cloud database service that provides the broadest SQL Server engine compatibility and up to a 212% return on investment. It is a database service that can quickly and efficiently scale to meet demand, is automatically highly available, and supports a variety of third party software.

Stitch

Stitch

Stitch is a simple, powerful ETL service built for software developers. Stitch evolved out of RJMetrics, a widely used business intelligence platform. When RJMetrics was acquired by Magento in 2016, Stitch was launched as its own company.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase