Apache Kylin vs Druid vs Apache Spark

Need advice about which tool to choose?Ask the StackShare community!

Apache Kylin

48
185
+ 1
23
Druid

303
642
+ 1
29
Apache Spark

2.4K
2.7K
+ 1
132
Advice on Apache Kylin, Druid, and Apache Spark
Nilesh Akhade
Technical Architect at Self Employed · | 5 upvotes · 217.5K views

We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.

In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.

In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.

See more
Replies (2)
Recommends
Elasticsearch

The first solution that came to me is to use upsert to update ElasticSearch:

  1. Use the primary-key as ES document id
  2. Upsert the records to ES as soon as you receive them. As you are using upsert, the 2nd record of the same primary-key will not overwrite the 1st one, but will be merged with it.

Cons: The load on ES will be higher, due to upsert.

To use Flink:

  1. Create a KeyedDataStream by the primary-key
  2. In the ProcessFunction, save the first record in a State. At the same time, create a Timer for 15 minutes in the future
  3. When the 2nd record comes, read the 1st record from the State, merge those two, and send out the result, and clear the State and the Timer if it has not fired
  4. When the Timer fires, read the 1st record from the State and send out as the output record.
  5. Have a 2nd Timer of 6 hours (or more) if you are not using Windowing to clean up the State

Pro: if you have already having Flink ingesting this stream. Otherwise, I would just go with the 1st solution.

See more
Akshaya Rawat
Senior Specialist Platform at Publicis Sapient · | 3 upvotes · 120.6K views
Recommends
Apache Spark

Please refer "Structured Streaming" feature of Spark. Refer "Stream - Stream Join" at https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#stream-stream-joins . In short you need to specify "Define watermark delays on both inputs" and "Define a constraint on time across the two inputs"

See more
Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More
Pros of Apache Kylin
Pros of Druid
Pros of Apache Spark
  • 7
    Star schema and snowflake schema support
  • 5
    Seamless BI integration
  • 4
    OLAP on Hadoop
  • 3
    Sub-second latency on extreme large dataset
  • 2
    Easy install
  • 2
    ANSI-SQL
  • 14
    Real Time Aggregations
  • 5
    Batch and Real-Time Ingestion
  • 4
    OLAP
  • 3
    OLAP + OLTP
  • 2
    Combining stream and historical analytics
  • 1
    OLTP
  • 58
    Open-source
  • 48
    Fast and Flexible
  • 7
    One platform for every big data problem
  • 6
    Easy to install and to use
  • 6
    Great for distributed SQL like applications
  • 3
    Works well for most Datascience usecases
  • 2
    Machine learning libratimery, Streaming in real
  • 2
    In memory Computation
  • 0
    Interactive Query

Sign up to add or upvote prosMake informed product decisions

Cons of Apache Kylin
Cons of Druid
Cons of Apache Spark
    Be the first to leave a con
    • 3
      Limited sql support
    • 2
      Joins are not supported well
    • 1
      Complexity
    • 3
      Speed

    Sign up to add or upvote consMake informed product decisions

    What is Apache Kylin?

    Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.

    What is Druid?

    Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

    What is Apache Spark?

    Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

    Need advice about which tool to choose?Ask the StackShare community!

    What companies use Apache Kylin?
    What companies use Druid?
    What companies use Apache Spark?

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with Apache Kylin?
    What tools integrate with Druid?
    What tools integrate with Apache Spark?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    Blog Posts

    Mar 24 2021 at 12:57PM

    Pinterest

    +7
    3
    1554
    +6
    2
    1520
    Aug 28 2019 at 3:10AM

    Segment

    +16
    5
    2077
    What are some alternatives to Apache Kylin, Druid, and Apache Spark?
    Presto
    Distributed SQL Query Engine for Big Data
    Apache Impala
    Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time.
    AtScale
    Its Virtual Data Warehouse delivers performance, security and agility to exceed the demands of modern-day operational analytics.
    Clickhouse
    It allows analysis of data that is updated in real time. It offers instant results in most cases: the data is processed faster than it takes to create a query.
    Kyvos
    It is the world’s most powerful BI acceleration platform that delivers instant insights at petabyte scale, both on the cloud and on-premise data lakes. Our breakthrough OLAP technology revolutionizes analytics by enabling users to visualize, explore, and analyze massive volumes of data with sub-second response times.
    See all alternatives