StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Odm
  5. Azure Cosmos DB vs Mongoose

Azure Cosmos DB vs Mongoose

OverviewComparisonAlternatives

Overview

Mongoose
Mongoose
Stacks2.4K
Followers1.4K
Votes56
Azure Cosmos DB
Azure Cosmos DB
Stacks594
Followers1.1K
Votes130

Azure Cosmos DB vs Mongoose: What are the differences?

Developers describe Azure Cosmos DB as "A fully-managed, globally distributed NoSQL database service". Azure DocumentDB is a fully managed NoSQL database service built for fast and predictable performance, high availability, elastic scaling, global distribution, and ease of development. On the other hand, Mongoose is detailed as "MongoDB object modeling designed to work in an asynchronous environment". Let's face it, writing MongoDB validation, casting and business logic boilerplate is a drag. That's why we wrote Mongoose. Mongoose provides a straight-forward, schema-based solution to modeling your application data and includes built-in type casting, validation, query building, business logic hooks and more, out of the box.

Azure Cosmos DB can be classified as a tool in the "NoSQL Database as a Service" category, while Mongoose is grouped under "Object Document Mapper (ODM)".

"Best-of-breed NoSQL features" is the top reason why over 13 developers like Azure Cosmos DB, while over 14 developers mention "Well documented" as the leading cause for choosing Mongoose.

Mongoose is an open source tool with 18.8K GitHub stars and 2.62K GitHub forks. Here's a link to Mongoose's open source repository on GitHub.

According to the StackShare community, Mongoose has a broader approval, being mentioned in 85 company stacks & 88 developers stacks; compared to Azure Cosmos DB, which is listed in 24 company stacks and 23 developer stacks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Mongoose
Mongoose
Azure Cosmos DB
Azure Cosmos DB

Let's face it, writing MongoDB validation, casting and business logic boilerplate is a drag. That's why we wrote Mongoose. Mongoose provides a straight-forward, schema-based solution to modeling your application data and includes built-in type casting, validation, query building, business logic hooks and more, out of the box.

Azure DocumentDB is a fully managed NoSQL database service built for fast and predictable performance, high availability, elastic scaling, global distribution, and ease of development.

-
Fully managed with 99.99% Availability SLA;Elastically and highly scalable (both throughput and storage);Predictable low latency: <10ms @ P99 reads and <15ms @ P99 fully-indexed writes;Globally distributed with multi-region replication;Rich SQL queries over schema-agnostic automatic indexing;JavaScript language integrated multi-record ACID transactions with snapshot isolation;Well-defined tunable consistency models: Strong, Bounded Staleness, Session, and Eventual
Statistics
Stacks
2.4K
Stacks
594
Followers
1.4K
Followers
1.1K
Votes
56
Votes
130
Pros & Cons
Pros
  • 17
    Several bad ideas mixed together
  • 17
    Well documented
  • 10
    JSON
  • 8
    Actually terrible documentation
  • 2
    Recommended and used by Valve. See steamworks docs
Cons
  • 3
    Model middleware/hooks are not user friendly
Pros
  • 28
    Best-of-breed NoSQL features
  • 22
    High scalability
  • 15
    Globally distributed
  • 14
    Automatic indexing over flexible json data model
  • 10
    Always on with 99.99% availability sla
Cons
  • 18
    Pricing
  • 4
    Poor No SQL query support
Integrations
Node.js
Node.js
MongoDB
MongoDB
Azure Machine Learning
Azure Machine Learning
MongoDB
MongoDB
Hadoop
Hadoop
Java
Java
Azure Functions
Azure Functions
Azure Container Service
Azure Container Service
Azure Storage
Azure Storage
Azure Websites
Azure Websites
Apache Spark
Apache Spark
Python
Python

What are some alternatives to Mongoose, Azure Cosmos DB?

Amazon DynamoDB

Amazon DynamoDB

With it , you can offload the administrative burden of operating and scaling a highly available distributed database cluster, while paying a low price for only what you use.

Cloud Firestore

Cloud Firestore

Cloud Firestore is a NoSQL document database that lets you easily store, sync, and query data for your mobile and web apps - at global scale.

Cloudant

Cloudant

Cloudant’s distributed database as a service (DBaaS) allows developers of fast-growing web and mobile apps to focus on building and improving their products, instead of worrying about scaling and managing databases on their own.

Google Cloud Bigtable

Google Cloud Bigtable

Google Cloud Bigtable offers you a fast, fully managed, massively scalable NoSQL database service that's ideal for web, mobile, and Internet of Things applications requiring terabytes to petabytes of data. Unlike comparable market offerings, Cloud Bigtable doesn't require you to sacrifice speed, scale, or cost efficiency when your applications grow. Cloud Bigtable has been battle-tested at Google for more than 10 years—it's the database driving major applications such as Google Analytics and Gmail.

Google Cloud Datastore

Google Cloud Datastore

Use a managed, NoSQL, schemaless database for storing non-relational data. Cloud Datastore automatically scales as you need it and supports transactions as well as robust, SQL-like queries.

CloudBoost

CloudBoost

CloudBoost.io is a database service for the “next web” - that not only does data-storage, but also search, real-time and a whole lot more which enables developers to build much richer apps with 50% less time saving them a ton of cost and helping them go to market much faster.

Firebase Realtime Database

Firebase Realtime Database

It is a cloud-hosted NoSQL database that lets you store and sync data between your users in realtime. Data is synced across all clients in realtime, and remains available when your app goes offline.

Mongoid

Mongoid

The philosophy of Mongoid is to provide a familiar API to Ruby developers who have been using Active Record or Data Mapper, while leveraging the power of MongoDB's schemaless and performant document-based design, dynamic queries, and atomic modifier operations.

restdb.io

restdb.io

RestDB is a NoSql document oriented database cloud service. Data is accessed as JSON objects via HTTPS. This gives great flexibility, easy system integration and future compatibility.

Amazon DocumentDB

Amazon DocumentDB

Amazon DocumentDB is a non-relational database service designed from the ground-up to give you the performance, scalability, and availability you need when operating mission-critical MongoDB workloads at scale. In Amazon DocumentDB, the storage and compute are decoupled, allowing each to scale independently, and you can increase the read capacity to millions of requests per second by adding up to 15 low latency read replicas in minutes, regardless of the size of your data.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase