StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Image Optimization
  4. Image Processing And Management
  5. OpenCV vs dicom

OpenCV vs dicom

OverviewComparisonAlternatives

Overview

OpenCV
OpenCV
Stacks1.4K
Followers1.1K
Votes101
dicom
dicom
Stacks23
Followers10
Votes0
GitHub Stars1.0K
Forks148

dicom vs OpenCV: What are the differences?

Developers describe dicom as "A High Performance DICOM Medical Image Parser in Go". It is a golang DICOM image parsing library and command line tool. Its features include parsing and extracting multi-frame DICOM imagery (both encapsulated and native pixel data), exposing a Parser golang interface to make mock-based testing easier for clients etc. On the other hand, OpenCV is detailed as "Open Source Computer Vision Library". OpenCV was designed for computational efficiency and with a strong focus on real-time applications. Written in optimized C/C++, the library can take advantage of multi-core processing. Enabled with OpenCL, it can take advantage of the hardware acceleration of the underlying heterogeneous compute platform.

dicom and OpenCV can be categorized as "Image Processing and Management" tools.

dicom and OpenCV are both open source tools. It seems that OpenCV with 37.1K GitHub stars and 27.4K forks on GitHub has more adoption than dicom with 344 GitHub stars and 17 GitHub forks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

OpenCV
OpenCV
dicom
dicom

OpenCV was designed for computational efficiency and with a strong focus on real-time applications. Written in optimized C/C++, the library can take advantage of multi-core processing. Enabled with OpenCL, it can take advantage of the hardware acceleration of the underlying heterogeneous compute platform.

It is a golang DICOM image parsing library and command line tool. Its features include parsing and extracting multi-frame DICOM imagery (both encapsulated and native pixel data), exposing a Parser golang interface to make mock-based testing easier for clients etc.

C++, C, Python and Java interfaces and supports Windows, Linux, Mac OS, iOS and Android;More than 47 thousand people of user community and estimated number of downloads exceeding 7 million;Usage ranges from interactive art, to mines inspection, stitching maps on the web or through advanced robotics
high-performance
Statistics
GitHub Stars
-
GitHub Stars
1.0K
GitHub Forks
-
GitHub Forks
148
Stacks
1.4K
Stacks
23
Followers
1.1K
Followers
10
Votes
101
Votes
0
Pros & Cons
Pros
  • 37
    Computer Vision
  • 18
    Open Source
  • 12
    Imaging
  • 10
    Face Detection
  • 10
    Machine Learning
No community feedback yet
Integrations
No integrations available
Golang
Golang
Docker
Docker

What are some alternatives to OpenCV, dicom?

Cloudinary

Cloudinary

Cloudinary is a cloud-based service that streamlines websites and mobile applications' entire image and video management needs - uploads, storage, administration, manipulations, and delivery.

imgix

imgix

imgix is the leading platform for end-to-end visual media processing. With robust APIs, SDKs, and integrations, imgix empowers developers to optimize, transform, manage, and deliver images and videos at scale through simple URL parameters.

ImageKit

ImageKit

ImageKit offers a real-time URL-based API for image & video optimization, streaming, and 50+ transformations to deliver perfect visual experiences on websites and apps. It also comes integrated with a Digital Asset Management solution.

Cloudimage

Cloudimage

Effortless image resizing, optimization and CDN delivery. Make your site fully responsive and really fast.

scikit-image

scikit-image

scikit-image is a collection of algorithms for image processing.

Kraken.io

Kraken.io

It supports JPEG, PNG and GIF files. You can optimize your images in two ways - by providing an URL of the image you want to optimize or by uploading an image file directly to its API.

ImageEngine

ImageEngine

ImageEngine is an intelligent Image CDN that dynamically optimizes image content tailored to the end users device. Using device intelligence at the CDN edge, developers can greatly simplify their image management process while accelerating their site.

FFMPEG

FFMPEG

The universal multimedia toolkit.

GStreamer

GStreamer

It is a library for constructing graphs of media-handling components. The applications it supports range from simple Ogg/Vorbis playback, audio/video streaming to complex audio (mixing) and video (non-linear editing) processing.

GraphicsMagick

GraphicsMagick

GraphicsMagick is the swiss army knife of image processing. Comprised of 267K physical lines (according to David A. Wheeler's SLOCCount) of source code in the base package (or 1,225K including 3rd party libraries) it provides a robust and efficient collection of tools and libraries which support reading, writing, and manipulating an image in over 88 major formats including important formats like DPX, GIF, JPEG, JPEG-2000, PNG, PDF, PNM, and TIFF.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase