Need advice about which tool to choose?Ask the StackShare community!
Manage your open source components, licenses, and vulnerabilities
Learn MorePros of Druid
Pros of Apache Impala
Pros of Apache Spark
Pros of Druid
- Real Time Aggregations15
- Batch and Real-Time Ingestion6
- OLAP5
- OLAP + OLTP3
- Combining stream and historical analytics2
- OLTP1
Pros of Apache Impala
- Super fast11
- Massively Parallel Processing1
- Load Balancing1
- Replication1
- Scalability1
- Distributed1
- High Performance1
- Open Sourse1
Pros of Apache Spark
- Open-source61
- Fast and Flexible48
- One platform for every big data problem8
- Great for distributed SQL like applications8
- Easy to install and to use6
- Works well for most Datascience usecases3
- Interactive Query2
- Machine learning libratimery, Streaming in real2
- In memory Computation2
Sign up to add or upvote prosMake informed product decisions
Cons of Druid
Cons of Apache Impala
Cons of Apache Spark
Cons of Druid
- Limited sql support3
- Joins are not supported well2
- Complexity1
Cons of Apache Impala
Be the first to leave a con
Cons of Apache Spark
- Speed4
Sign up to add or upvote consMake informed product decisions
- No public GitHub repository available -
What is Druid?
Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.
What is Apache Impala?
Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time.
What is Apache Spark?
Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
Need advice about which tool to choose?Ask the StackShare community!
Jobs that mention Druid, Apache Impala, and Apache Spark as a desired skillset
What companies use Druid?
What companies use Apache Impala?
What companies use Apache Spark?
What companies use Druid?
What companies use Apache Impala?
What companies use Apache Spark?
Sign up to get full access to all the companiesMake informed product decisions
What tools integrate with Druid?
What tools integrate with Apache Impala?
What tools integrate with Apache Spark?
What tools integrate with Apache Impala?
What tools integrate with Apache Spark?
Sign up to get full access to all the tool integrationsMake informed product decisions
Blog Posts
What are some alternatives to Druid, Apache Impala, and Apache Spark?
HBase
Apache HBase is an open-source, distributed, versioned, column-oriented store modeled after Google' Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, HBase provides Bigtable-like capabilities on top of Apache Hadoop.
MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.
Cassandra
Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.
Prometheus
Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true.
Elasticsearch
Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).