Need advice about which tool to choose?Ask the StackShare community!
Elasticsearch vs TensorFlow: What are the differences?
Elasticsearch: Open Source, Distributed, RESTful Search Engine. Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack); TensorFlow: Open Source Software Library for Machine Intelligence. TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.
Elasticsearch can be classified as a tool in the "Search as a Service" category, while TensorFlow is grouped under "Machine Learning Tools".
"Powerful api" is the primary reason why developers consider Elasticsearch over the competitors, whereas "High Performance" was stated as the key factor in picking TensorFlow.
Elasticsearch is an open source tool with 41.9K GitHub stars and 14K GitHub forks. Here's a link to Elasticsearch's open source repository on GitHub.
Instacart, Slack, and Stack Exchange are some of the popular companies that use Elasticsearch, whereas TensorFlow is used by Uber Technologies, 9GAG, and VSCO. Elasticsearch has a broader approval, being mentioned in 1976 company stacks & 936 developers stacks; compared to TensorFlow, which is listed in 195 company stacks and 126 developer stacks.
Hey everybody! (1) I am developing an android application. I have data of around 3 million record (less than a TB). I want to save that data in the cloud. Which company provides the best cloud database services that would suit my scenario? It should be secured, long term useable, and provide better services. I decided to use Firebase Realtime database. Should I stick with Firebase or are there any other companies that provide a better service?
(2) I have the functionality of searching data in my app. Same data (less than a TB). Which search solution should I use in this case? I found Elasticsearch and Algolia search. It should be secure and fast. If any other company provides better services than these, please feel free to suggest them.
Thank you!

Hi Rana, good question! From my Firebase experience, 3 million records is not too big at all, as long as the cost is within reason for you. With Firebase you will be able to access the data from anywhere, including an android app, and implement fine-grained security with JSON rules. The real-time-ness works perfectly. As a fully managed database, Firebase really takes care of everything. The only thing to watch out for is if you need complex query patterns - Firestore (also in the Firebase family) can be a better fit there.
To answer question 2: the right answer will depend on what's most important to you. Algolia is like Firebase is that it is fully-managed, very easy to set up, and has great SDKs for Android. Algolia is really a full-stack search solution in this case, and it is easy to connect with your Firebase data. Bear in mind that Algolia does cost money, so you'll want to make sure the cost is okay for you, but you will save a lot of engineering time and never have to worry about scale. The search-as-you-type performance with Algolia is flawless, as that is a primary aspect of its design. Elasticsearch can store tons of data and has all the flexibility, is hosted for cheap by many cloud services, and has many users. If you haven't done a lot with search before, the learning curve is higher than Algolia for getting the results ranked properly, and there is another learning curve if you want to do the DevOps part yourself. Both are very good platforms for search, Algolia shines when buliding your app is the most important and you don't want to spend many engineering hours, Elasticsearch shines when you have a lot of data and don't mind learning how to run and optimize it.

Rana - we use Cloud Firestore at our startup. It handles many million records without any issues. It provides you the same set of features that the Firebase Realtime Database provides on top of the indexing and security trims. The only thing to watch out for is to make sure your Cloud Functions have proper exception handling and there are no infinite loop in the code. This will be too costly if not caught quickly.
For search; Algolia is a great option, but cost is a real consideration. Indexing large number of records can be cost prohibitive for most projects. Elasticsearch is a solid alternative, but requires a little additional work to configure and maintain if you want to self-host.
Hope this helps.
For data analysis, we choose a Python-based framework because of Python's simplicity as well as its large community and available supporting tools. We choose PyTorch over TensorFlow for our machine learning library because it has a flatter learning curve and it is easy to debug, in addition to the fact that our team has some existing experience with PyTorch. Numpy is used for data processing because of its user-friendliness, efficiency, and integration with other tools we have chosen. Finally, we decide to include Anaconda in our dev process because of its simple setup process to provide sufficient data science environment for our purposes. The trained model then gets deployed to the back end as a pickle.
Pros of Elasticsearch
- Powerful api322
- Great search engine314
- Open source230
- Restful214
- Near real-time search199
- Free96
- Search everything83
- Easy to get started54
- Analytics45
- Distributed26
- Fast search6
- More than a search engine5
- Easy to scale3
- Awesome, great tool3
- Great docs3
- Potato2
- Document Store2
- Great customer support2
- Intuitive API2
- Reliable2
- Nosql DB2
- Fast2
- Easy setup2
- Highly Available2
- Great piece of software2
- Ecosystem1
- Scalability1
- Not stable1
- Github1
- Elaticsearch1
- Actively developing1
- Responsive maintainers on GitHub1
- Easy to get hot data1
- Open1
- Community0
Pros of TensorFlow
- High Performance28
- Connect Research and Production17
- Deep Flexibility14
- Auto-Differentiation11
- True Portability10
- High level abstraction4
- Easy to use4
- Powerful4
Sign up to add or upvote prosMake informed product decisions
Cons of Elasticsearch
- Resource hungry7
- Diffecult to get started6
- Expensive5
- Hard to keep stable at large scale4
Cons of TensorFlow
- Hard9
- Hard to debug6
- Documentation not very helpful1