Need advice about which tool to choose?Ask the StackShare community!

Apache Flink

528
875
+ 1
38
Trifacta

16
41
+ 1
0
Add tool

Apache Flink vs Trifacta: What are the differences?

Developers describe Apache Flink as "Fast and reliable large-scale data processing engine". Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala. On the other hand, Trifacta is detailed as "Develops data wrangling software for data exploration and self-service data preparation for analysis". It is an Intelligent Platform that Interoperates with Your Data Investments. It sits between the data storage and processing environments and the visualization, statistical or machine learning tools used downstream.

Apache Flink and Trifacta belong to "Big Data Tools" category of the tech stack.

Some of the features offered by Apache Flink are:

  • Hybrid batch/streaming runtime that supports batch processing and data streaming programs.
  • Custom memory management to guarantee efficient, adaptive, and highly robust switching between in-memory and data processing out-of-core algorithms.
  • Flexible and expressive windowing semantics for data stream programs

On the other hand, Trifacta provides the following key features:

  • Interactive Exploration
  • Automated visual representations of data based upon its content in the most compelling visual profile
  • Predictive Transformation

Apache Flink is an open source tool with 10K GitHub stars and 5.37K GitHub forks. Here's a link to Apache Flink's open source repository on GitHub.

Advice on Apache Flink and Trifacta
Nilesh Akhade
Technical Architect at Self Employed · | 5 upvotes · 555.2K views

We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.

In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.

In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.

See more
Replies (2)
Recommends
on
ElasticsearchElasticsearch

The first solution that came to me is to use upsert to update ElasticSearch:

  1. Use the primary-key as ES document id
  2. Upsert the records to ES as soon as you receive them. As you are using upsert, the 2nd record of the same primary-key will not overwrite the 1st one, but will be merged with it.

Cons: The load on ES will be higher, due to upsert.

To use Flink:

  1. Create a KeyedDataStream by the primary-key
  2. In the ProcessFunction, save the first record in a State. At the same time, create a Timer for 15 minutes in the future
  3. When the 2nd record comes, read the 1st record from the State, merge those two, and send out the result, and clear the State and the Timer if it has not fired
  4. When the Timer fires, read the 1st record from the State and send out as the output record.
  5. Have a 2nd Timer of 6 hours (or more) if you are not using Windowing to clean up the State

Pro: if you have already having Flink ingesting this stream. Otherwise, I would just go with the 1st solution.

See more
Akshaya Rawat
Senior Specialist Platform at Publicis Sapient · | 3 upvotes · 392.2K views
Recommends
on
Apache SparkApache Spark

Please refer "Structured Streaming" feature of Spark. Refer "Stream - Stream Join" at https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#stream-stream-joins . In short you need to specify "Define watermark delays on both inputs" and "Define a constraint on time across the two inputs"

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Apache Flink
Pros of Trifacta
  • 16
    Unified batch and stream processing
  • 8
    Easy to use streaming apis
  • 8
    Out-of-the box connector to kinesis,s3,hdfs
  • 4
    Open Source
  • 2
    Low latency
    Be the first to leave a pro

    Sign up to add or upvote prosMake informed product decisions

    - No public GitHub repository available -

    What is Apache Flink?

    Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

    What is Trifacta?

    It is an Intelligent Platform that Interoperates with Your Data Investments. It sits between the data storage and processing environments and the visualization, statistical or machine learning tools used downstream

    Need advice about which tool to choose?Ask the StackShare community!

    What companies use Apache Flink?
    What companies use Trifacta?
    Manage your open source components, licenses, and vulnerabilities
    Learn More

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with Apache Flink?
    What tools integrate with Trifacta?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    Blog Posts

    Mar 24 2021 at 12:57PM

    Pinterest

    GitJenkinsKafka+7
    3
    2214
    What are some alternatives to Apache Flink and Trifacta?
    Apache Spark
    Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
    Apache Storm
    Apache Storm is a free and open source distributed realtime computation system. Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate.
    Akutan
    A distributed knowledge graph store. Knowledge graphs are suitable for modeling data that is highly interconnected by many types of relationships, like encyclopedic information about the world.
    Apache Flume
    It is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. It has a simple and flexible architecture based on streaming data flows. It is robust and fault tolerant with tunable reliability mechanisms and many failover and recovery mechanisms. It uses a simple extensible data model that allows for online analytic application.
    Kafka
    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.
    See all alternatives