StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data As A Service
  5. Google BigQuery vs peewee

Google BigQuery vs peewee

OverviewComparisonAlternatives

Overview

Google BigQuery
Google BigQuery
Stacks1.8K
Followers1.5K
Votes152
peewee
peewee
Stacks50
Followers105
Votes19
GitHub Stars11.8K
Forks1.4K

Google BigQuery vs peewee: What are the differences?

What is Google BigQuery? Analyze terabytes of data in seconds. Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python..

What is peewee? A small, expressive ORM -- supports postgresql, mysql and sqlite. A small, expressive orm, written in python (2.6+, 3.2+), with built-in support for sqlite, mysql and postgresql and special extensions like hstore.

Google BigQuery can be classified as a tool in the "Big Data as a Service" category, while peewee is grouped under "Object Relational Mapper (ORM)".

peewee is an open source tool with 6.64K GitHub stars and 1.1K GitHub forks. Here's a link to peewee's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Google BigQuery
Google BigQuery
peewee
peewee

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

A small, expressive orm, written in python (2.6+, 3.2+), with built-in support for sqlite, mysql and postgresql and special extensions like hstore.

All behind the scenes- Your queries can execute asynchronously in the background, and can be polled for status.;Import data with ease- Bulk load your data using Google Cloud Storage or stream it in bursts of up to 1,000 rows per second.;Affordable big data- The first Terabyte of data processed each month is free.;The right interface- Separate interfaces for administration and developers will make sure that you have access to the tools you need.
-
Statistics
GitHub Stars
-
GitHub Stars
11.8K
GitHub Forks
-
GitHub Forks
1.4K
Stacks
1.8K
Stacks
50
Followers
1.5K
Followers
105
Votes
152
Votes
19
Pros & Cons
Pros
  • 28
    High Performance
  • 25
    Easy to use
  • 22
    Fully managed service
  • 19
    Cheap Pricing
  • 16
    Process hundreds of GB in seconds
Cons
  • 1
    You can't unit test changes in BQ data
  • 0
    Sdas
Pros
  • 7
    Easy to start
  • 4
    High Performance
  • 4
    Free
  • 4
    Open Source
Integrations
Xplenty
Xplenty
Fluentd
Fluentd
Looker
Looker
Chartio
Chartio
Treasure Data
Treasure Data
PostgreSQL
PostgreSQL
MySQL
MySQL
SQLite
SQLite

What are some alternatives to Google BigQuery, peewee?

Sequelize

Sequelize

Sequelize is a promise-based ORM for Node.js and io.js. It supports the dialects PostgreSQL, MySQL, MariaDB, SQLite and MSSQL and features solid transaction support, relations, read replication and more.

Amazon Redshift

Amazon Redshift

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Qubole

Qubole

Qubole is a cloud based service that makes big data easy for analysts and data engineers.

Prisma

Prisma

Prisma is an open-source database toolkit. It replaces traditional ORMs and makes database access easy with an auto-generated query builder for TypeScript & Node.js.

Amazon EMR

Amazon EMR

It is used in a variety of applications, including log analysis, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics.

Hibernate

Hibernate

Hibernate is a suite of open source projects around domain models. The flagship project is Hibernate ORM, the Object Relational Mapper.

Doctrine 2

Doctrine 2

Doctrine 2 sits on top of a powerful database abstraction layer (DBAL). One of its key features is the option to write database queries in a proprietary object oriented SQL dialect called Doctrine Query Language (DQL), inspired by Hibernates HQL.

Altiscale

Altiscale

we run Apache Hadoop for you. We not only deploy Hadoop, we monitor, manage, fix, and update it for you. Then we take it a step further: We monitor your jobs, notify you when something’s wrong with them, and can help with tuning.

Snowflake

Snowflake

Snowflake eliminates the administration and management demands of traditional data warehouses and big data platforms. Snowflake is a true data warehouse as a service running on Amazon Web Services (AWS)—no infrastructure to manage and no knobs to turn.

MikroORM

MikroORM

TypeScript ORM for Node.js based on Data Mapper, Unit of Work and Identity Map patterns. Supports MongoDB, MySQL, MariaDB, PostgreSQL and SQLite databases.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase