Need advice about which tool to choose?Ask the StackShare community!

HBase

462
495
+ 1
15
MarkLogic

42
70
+ 1
26
Add tool

HBase vs MarkLogic: What are the differences?

What is HBase? The Hadoop database, a distributed, scalable, big data store. Apache HBase is an open-source, distributed, versioned, column-oriented store modeled after Google' Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, HBase provides Bigtable-like capabilities on top of Apache Hadoop.

What is MarkLogic? Schema-agnostic Enterprise NoSQL database technology, coupled w/ powerful search & flexible application services. MarkLogic is the only Enterprise NoSQL database, bringing all the features you need into one unified system: a document-centric, schema-agnostic, structure-aware, clustered, transactional, secure, database server with built-in search and a full suite of application services.

HBase and MarkLogic belong to "Databases" category of the tech stack.

"Performance" is the top reason why over 7 developers like HBase, while over 3 developers mention "RDF Triples" as the leading cause for choosing MarkLogic.

HBase is an open source tool with 2.91K GitHub stars and 2.01K GitHub forks. Here's a link to HBase's open source repository on GitHub.

Advice on HBase and MarkLogic
Needs advice
on
HBaseHBaseMilvusMilvus
and
RocksDBRocksDB

I am researching different querying solutions to handle ~1 trillion records of data (in the realm of a petabyte). The data is mostly textual. I have identified a few options: Milvus, HBase, RocksDB, and Elasticsearch. I was wondering if there is a good way to compare the performance of these options (or if anyone has already done something like this). I want to be able to compare the speed of ingesting and querying textual data from these tools. Does anyone have information on this or know where I can find some? Thanks in advance!

See more
Replies (1)
Recommends

You've probably come to a decision already but for those reading...here are some resources we put together to help people learn more about Milvus and other databases https://zilliz.com/comparison and https://github.com/zilliztech/VectorDBBench. I don't think they include RocksDB or HBase yet (you could could recommend on GitHub) but hopefully they help answer your Elastic Search questions.

See more
Needs advice
on
HadoopHadoopMarkLogicMarkLogic
and
SnowflakeSnowflake

For a property and casualty insurance company, we currently use MarkLogic and Hadoop for our raw data lake. Trying to figure out how snowflake fits in the picture. Does anybody have some good suggestions/best practices for when to use and what data to store in Mark logic versus Snowflake versus a hadoop or all three of these platforms redundant with one another?

See more
Needs advice
on
HadoopHadoopMarkLogicMarkLogic
and
SnowflakeSnowflake

for property and casualty insurance company we current Use marklogic and Hadoop for our raw data lake. Trying to figure out how snowflake fits in the picture. Does anybody have some good suggestions/best practices for when to use and what data to store in Mark logic versus snowflake versus a hadoop or all three of these platforms redundant with one another?

See more
Replies (1)
Ivo Dinis Rodrigues
none of you bussines at Marklogic · | 1 upvotes · 21.1K views
Recommends

As i see it, you can use Snowflake as your data warehouse and marklogic as a data lake. You can add all your raw data to ML and curate it to a company data model to then supply this to Snowflake. You could try to implement the dw functionality on marklogic but it will just cost you alot of time. If you are using Aws version of Snowflake you can use ML spark connector to access the data. As an extra you can use the ML also as an Operational report system if you join it with a Reporting tool lie PowerBi. With extra apis you can also provide data to other systems with ML as source.

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of HBase
Pros of MarkLogic
  • 9
    Performance
  • 5
    OLTP
  • 1
    Fast Point Queries
  • 5
    RDF Triples
  • 3
    JSON
  • 3
    Marklogic is absolutely stable and very fast
  • 3
    REST API
  • 3
    JavaScript
  • 3
    Enterprise
  • 2
    Semantics
  • 2
    Multi-model DB
  • 1
    Bitemporal
  • 1
    Tiered Storage

Sign up to add or upvote prosMake informed product decisions

- No public GitHub repository available -

What is HBase?

Apache HBase is an open-source, distributed, versioned, column-oriented store modeled after Google' Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, HBase provides Bigtable-like capabilities on top of Apache Hadoop.

What is MarkLogic?

MarkLogic is the only Enterprise NoSQL database, bringing all the features you need into one unified system: a document-centric, schema-agnostic, structure-aware, clustered, transactional, secure, database server with built-in search and a full suite of application services.

Need advice about which tool to choose?Ask the StackShare community!

What companies use HBase?
What companies use MarkLogic?
Manage your open source components, licenses, and vulnerabilities
Learn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with HBase?
What tools integrate with MarkLogic?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

Jun 24 2020 at 4:42PM

Pinterest

Amazon S3KafkaHBase+4
4
1253
MySQLKafkaApache Spark+6
2
2062
What are some alternatives to HBase and MarkLogic?
Cassandra
Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.
Google Cloud Bigtable
Google Cloud Bigtable offers you a fast, fully managed, massively scalable NoSQL database service that's ideal for web, mobile, and Internet of Things applications requiring terabytes to petabytes of data. Unlike comparable market offerings, Cloud Bigtable doesn't require you to sacrifice speed, scale, or cost efficiency when your applications grow. Cloud Bigtable has been battle-tested at Google for more than 10 years—it's the database driving major applications such as Google Analytics and Gmail.
MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.
Hadoop
The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.
Druid
Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.
See all alternatives