StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Background Jobs
  4. Message Queue
  5. Kafka vs Sqoop

Kafka vs Sqoop

OverviewDecisionsComparisonAlternatives

Overview

Kafka
Kafka
Stacks24.2K
Followers22.3K
Votes607
GitHub Stars31.2K
Forks14.8K
Sqoop
Sqoop
Stacks61
Followers57
Votes0

Kafka vs Sqoop: What are the differences?

# Introduction
Apache Kafka and Apache Sqoop are both tools commonly used in the realm of data processing. While Kafka focuses on real-time data streaming and messaging, Sqoop is primarily used for data loading between Hadoop and relational databases.

1. **Data Processing**: Kafka is designed for real-time data streaming, allowing continuous data ingestion and processing in real time, whereas Sqoop is centered around batch processing, enabling bulk data transfers between Hadoop and traditional databases in batches.
2. **Use Cases**: Kafka is ideal for use cases that require real-time data consumption, such as stream processing, data analytics, and log aggregation, while Sqoop is better suited for scenarios where periodic batch data movements are needed, like data warehousing and data backup.
3. **Scalability**: Kafka is highly scalable and can handle a large volume of data streams and processing without any downtime, making it a preferred choice for high-throughput applications, whereas Sqoop may face scalability challenges when dealing with massive data transfers due to its batch-oriented nature.
4. **Architecture**: Kafka follows a distributed publish-subscribe messaging system architecture where data is published by producers and consumed by consumers, while Sqoop follows a client-server architecture model for transferring data between Hadoop and relational databases using connectors.
5. **Error Handling**: Kafka provides robust error handling mechanisms, ensuring fault tolerance through data replication and partitioning, whereas Sqoop may encounter issues in error handling during data transfer, potentially leading to data inconsistency if not properly managed.
6. **Ecosystem Integration**: Kafka seamlessly integrates with other components in the Apache ecosystem, such as Spark, Storm, and HBase, enabling a comprehensive real-time data processing environment, whereas Sqoop's integration is primarily with Hadoop components, limiting its ecosystem compatibility compared to Kafka.

In Summary, Kafka excels in real-time data streaming and processing with high scalability and fault tolerance, while Sqoop is more suitable for batch data transfers between Hadoop and relational databases with limited ecosystem integration possibilities.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Kafka, Sqoop

viradiya
viradiya

Apr 12, 2020

Needs adviceonAngularJSAngularJSASP.NET CoreASP.NET CoreMSSQLMSSQL

We are going to develop a microservices-based application. It consists of AngularJS, ASP.NET Core, and MSSQL.

We have 3 types of microservices. Emailservice, Filemanagementservice, Filevalidationservice

I am a beginner in microservices. But I have read about RabbitMQ, but come to know that there are Redis and Kafka also in the market. So, I want to know which is best.

933k views933k
Comments
Ishfaq
Ishfaq

Feb 28, 2020

Needs advice

Our backend application is sending some external messages to a third party application at the end of each backend (CRUD) API call (from UI) and these external messages take too much extra time (message building, processing, then sent to the third party and log success/failure), UI application has no concern to these extra third party messages.

So currently we are sending these third party messages by creating a new child thread at end of each REST API call so UI application doesn't wait for these extra third party API calls.

I want to integrate Apache Kafka for these extra third party API calls, so I can also retry on failover third party API calls in a queue(currently third party messages are sending from multiple threads at the same time which uses too much processing and resources) and logging, etc.

Question 1: Is this a use case of a message broker?

Question 2: If it is then Kafka vs RabitMQ which is the better?

804k views804k
Comments
Roman
Roman

Senior Back-End Developer, Software Architect

Feb 12, 2019

ReviewonKafkaKafka

I use Kafka because it has almost infinite scaleability in terms of processing events (could be scaled to process hundreds of thousands of events), great monitoring (all sorts of metrics are exposed via JMX).

Downsides of using Kafka are:

  • you have to deal with Zookeeper
  • you have to implement advanced routing yourself (compared to RabbitMQ it has no advanced routing)
10.8k views10.8k
Comments

Detailed Comparison

Kafka
Kafka
Sqoop
Sqoop

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

It is a tool designed for efficiently transferring bulk data between Apache Hadoop and structured datastores such as relational databases of The Apache Software Foundation

Written at LinkedIn in Scala;Used by LinkedIn to offload processing of all page and other views;Defaults to using persistence, uses OS disk cache for hot data (has higher throughput then any of the above having persistence enabled);Supports both on-line as off-line processing
-
Statistics
GitHub Stars
31.2K
GitHub Stars
-
GitHub Forks
14.8K
GitHub Forks
-
Stacks
24.2K
Stacks
61
Followers
22.3K
Followers
57
Votes
607
Votes
0
Pros & Cons
Pros
  • 126
    High-throughput
  • 119
    Distributed
  • 92
    Scalable
  • 86
    High-Performance
  • 66
    Durable
Cons
  • 32
    Non-Java clients are second-class citizens
  • 29
    Needs Zookeeper
  • 9
    Operational difficulties
  • 5
    Terrible Packaging
No community feedback yet

What are some alternatives to Kafka, Sqoop?

dbForge Studio for MySQL

dbForge Studio for MySQL

It is the universal MySQL and MariaDB client for database management, administration and development. With the help of this intelligent MySQL client the work with data and code has become easier and more convenient. This tool provides utilities to compare, synchronize, and backup MySQL databases with scheduling, and gives possibility to analyze and report MySQL tables data.

RabbitMQ

RabbitMQ

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

dbForge Studio for Oracle

dbForge Studio for Oracle

It is a powerful integrated development environment (IDE) which helps Oracle SQL developers to increase PL/SQL coding speed, provides versatile data editing tools for managing in-database and external data.

dbForge Studio for PostgreSQL

dbForge Studio for PostgreSQL

It is a GUI tool for database development and management. The IDE for PostgreSQL allows users to create, develop, and execute queries, edit and adjust the code to their requirements in a convenient and user-friendly interface.

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

dbForge Studio for SQL Server

dbForge Studio for SQL Server

It is a powerful IDE for SQL Server management, administration, development, data reporting and analysis. The tool will help SQL developers to manage databases, version-control database changes in popular source control systems, speed up routine tasks, as well, as to make complex database changes.

Amazon SQS

Amazon SQS

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

NSQ

NSQ

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

ActiveMQ

ActiveMQ

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase