StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Machine Learning Tools
  5. Manifold vs Streamlit

Manifold vs Streamlit

OverviewComparisonAlternatives

Overview

Streamlit
Streamlit
Stacks403
Followers407
Votes12
GitHub Stars42.1K
Forks3.9K
Manifold
Manifold
Stacks2
Followers4
Votes0
GitHub Stars1.7K
Forks117

Streamlit vs Manifold: What are the differences?

Developers describe Streamlit as "A Python app framework built specifically for Machine Learning and Data Science teams". It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API. On the other hand, Manifold is detailed as "A model-agnostic visual debugging tool for machine learning". Understanding ML model performance and behavior is a non-trivial process, given the intrisic opacity of ML algorithms. Performance summary statistics such as AUC, RMSE, and others are not instructive enough for identifying what went wrong with a model or how to improve it. As a visual analytics tool, Manifold allows ML practitioners to look beyond overall summary metrics to detect which subset of data a model is inaccurately predicting.

Streamlit and Manifold can be categorized as "Machine Learning" tools.

Some of the features offered by Streamlit are:

  • Free and open source
  • Build apps in a dozen lines of Python with a simple API
  • No callbacks

On the other hand, Manifold provides the following key features:

  • Performance Comparison View
  • Feature Attribution View
  • Histogram / heatmap

Streamlit and Manifold are both open source tools. Streamlit with 6.44K GitHub stars and 552 forks on GitHub appears to be more popular than Manifold with 778 GitHub stars and 58 GitHub forks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Streamlit
Streamlit
Manifold
Manifold

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

Understanding ML model performance and behavior is a non-trivial process, given the intrisic opacity of ML algorithms. Performance summary statistics such as AUC, RMSE, and others are not instructive enough for identifying what went wrong with a model or how to improve it. As a visual analytics tool, Manifold allows ML practitioners to look beyond overall summary metrics to detect which subset of data a model is inaccurately predicting.

Free and open source; Build apps in a dozen lines of Python with a simple API; No callbacks; No hidden state; Works with TensorFlow, Keras, PyTorch, Pandas, Numpy, Matplotlib, Seaborn, Altair, Plotly, Bokeh, Vega-Lite, and more
Performance Comparison View; Feature Attribution View; Histogram / heatmap; Segment groups; Ranking; Geo Feature View
Statistics
GitHub Stars
42.1K
GitHub Stars
1.7K
GitHub Forks
3.9K
GitHub Forks
117
Stacks
403
Stacks
2
Followers
407
Followers
4
Votes
12
Votes
0
Pros & Cons
Pros
  • 11
    Fast development
  • 1
    Fast development and apprenticeship
No community feedback yet
Integrations
Python
Python
Plotly.js
Plotly.js
PyTorch
PyTorch
Pandas
Pandas
Bokeh
Bokeh
Keras
Keras
NumPy
NumPy
Matplotlib
Matplotlib
TensorFlow
TensorFlow
Altair GraphQL
Altair GraphQL
Redux
Redux
React
React

What are some alternatives to Streamlit, Manifold?

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Keras

Keras

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

Kubeflow

Kubeflow

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

MLflow

MLflow

MLflow is an open source platform for managing the end-to-end machine learning lifecycle.

H2O

H2O

H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark.

PredictionIO

PredictionIO

PredictionIO is an open source machine learning server for software developers to create predictive features, such as personalization, recommendation and content discovery.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope