Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more. | It is a software platform for data science teams that unites data prep, machine learning, and predictive model deployment. |
Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data;Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects;Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations;Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data;Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects;Intelligent label-based slicing, fancy indexing, and subsetting of large data sets;Intuitive merging and joining data sets;Flexible reshaping and pivoting of data sets;Hierarchical labeling of axes (possible to have multiple labels per tick);Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format;Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc. | Graphical user interface;
Analysis processes design;
Multiple data management methods;
Data from file, database, web, and cloud services;
In-memory, in-database and in-Hadoop analytics;
Application templates;
-D graphs, scatter matrices, self-organizing map;
GUI or batch processing |
Statistics | |
GitHub Stars - | GitHub Stars 0 |
GitHub Forks - | GitHub Forks 0 |
Stacks 1.8K | Stacks 36 |
Followers 1.3K | Followers 65 |
Votes 23 | Votes 0 |
Pros & Cons | |
Pros
| No community feedback yet |
Integrations | |

JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles.

Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best.

Fast, flexible and pragmatic, PHP powers everything from your blog to the most popular websites in the world.

Ruby is a language of careful balance. Its creator, Yukihiro “Matz” Matsumoto, blended parts of his favorite languages (Perl, Smalltalk, Eiffel, Ada, and Lisp) to form a new language that balanced functional programming with imperative programming.

Java is a programming language and computing platform first released by Sun Microsystems in 1995. There are lots of applications and websites that will not work unless you have Java installed, and more are created every day. Java is fast, secure, and reliable. From laptops to datacenters, game consoles to scientific supercomputers, cell phones to the Internet, Java is everywhere!

Go is expressive, concise, clean, and efficient. Its concurrency mechanisms make it easy to write programs that get the most out of multicore and networked machines, while its novel type system enables flexible and modular program construction. Go compiles quickly to machine code yet has the convenience of garbage collection and the power of run-time reflection. It's a fast, statically typed, compiled language that feels like a dynamically typed, interpreted language.

HTML5 is a core technology markup language of the Internet used for structuring and presenting content for the World Wide Web. As of October 2014 this is the final and complete fifth revision of the HTML standard of the World Wide Web Consortium (W3C). The previous version, HTML 4, was standardised in 1997.

C# (pronounced "See Sharp") is a simple, modern, object-oriented, and type-safe programming language. C# has its roots in the C family of languages and will be immediately familiar to C, C++, Java, and JavaScript programmers.

Scala is an acronym for “Scalable Language”. This means that Scala grows with you. You can play with it by typing one-line expressions and observing the results. But you can also rely on it for large mission critical systems, as many companies, including Twitter, LinkedIn, or Intel do. To some, Scala feels like a scripting language. Its syntax is concise and low ceremony; its types get out of the way because the compiler can infer them.

Elixir leverages the Erlang VM, known for running low-latency, distributed and fault-tolerant systems, while also being successfully used in web development and the embedded software domain.