Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.
Wise.io builds machine intelligence products that make it easy for companies to derive actionable insight from their greatest corporate resource: their data. | It lets you run machine learning models with a few lines of code, without needing to understand how machine learning works. |
Use Wise.io for: Fraud detection, Intelligent sensors, Ad Targeting & Personalization, Genomics, Business Analytics, Finance, Healthcare, Sentiment Analysis;Dead simple machine learning.- Our intuitive, easy-to-use platform for machine learning enables anyone to build and deploy models with a few simple clicks.;A data science marketplace.- With the feature marketplace, we provide companies access to an expansive knowledge base.;State-of the art technology.- Our IP is 10-100x faster and more memory efficient than any other implementation we can find.;From experiment to production.- By breaking the barrier between sandbox learning and large-scale production environments, we decrease the lead time from inception to deployment.;Automated reports.- Every time you build a model, we generate an easy-to-read report detailing the insights gleaned from your data and the performance of your newly minted model.;Public or private cloud.- Our hosted platform makes it easy for businesses to deploy machine intelligence without having to build the infrastructure. For companies with security or latency concerns, we gladly offer an on-premise solution. | Thousands of models, ready to use;
Automatic API;
Automatic scale;
Pay by the second |
Statistics | |
Stacks 2 | Stacks 53 |
Followers 8 | Followers 12 |
Votes 0 | Votes 0 |
Integrations | |
| No integrations available | |

Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency.

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

Mercurial is dedicated to speed and efficiency with a sane user interface. It is written in Python. Mercurial's implementation and data structures are designed to be fast. You can generate diffs between revisions, or jump back in time within seconds.

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Subversion exists to be universally recognized and adopted as an open-source, centralized version control system characterized by its reliability as a safe haven for valuable data; the simplicity of its model and usage; and its ability to support the needs of a wide variety of users and projects, from individuals to large-scale enterprise operations.

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

Build a custom machine learning model without expertise or large amount of data. Just go to nanonets, upload images, wait for few minutes and integrate nanonets API to your application.

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API