Alternatives to TempoDB logo

Alternatives to TempoDB

InfluxDB, Amazon RDS, Amazon RDS for Aurora, Google Cloud SQL, and Azure SQL Database are the most popular alternatives and competitors to TempoDB.
2
3
+ 1
0

What is TempoDB and what are its top alternatives?

TempoDB is the first database service for time series data (ex: measuring thermostat temperatures, network latencies, heart rates). Time series is a unique Big Data problem that breaks traditional databases (MySQL, MongoDB, etc). Today, businesses spend months and millions attempting to build solutions to manage all this data and yet still fail to store as much as they need or analyze it effectively. TempoDB is a purpose-built database service that enables businesses to store and analyze massive streams of time series data, so they can learn from the past, understand the present, and predict the future.
TempoDB is a tool in the SQL Database as a Service category of a tech stack.

TempoDB alternatives & related posts

related Amazon RDS posts

Julien DeFrance
Julien DeFrance
Principal Software Engineer at Tophatter | 16 upvotes 1.3M views
atSmartZipSmartZip
Rails
Rails
Rails API
Rails API
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Capistrano
Capistrano
Docker
Docker
Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
MySQL
MySQL
Amazon RDS for Aurora
Amazon RDS for Aurora
Amazon ElastiCache
Amazon ElastiCache
Memcached
Memcached
Amazon CloudFront
Amazon CloudFront
Segment
Segment
Zapier
Zapier
Amazon Redshift
Amazon Redshift
Amazon Quicksight
Amazon Quicksight
Superset
Superset
Elasticsearch
Elasticsearch
Amazon Elasticsearch Service
Amazon Elasticsearch Service
New Relic
New Relic
AWS Lambda
AWS Lambda
Node.js
Node.js
Ruby
Ruby
Amazon DynamoDB
Amazon DynamoDB
Algolia
Algolia

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
Ganesa Vijayakumar
Ganesa Vijayakumar
Full Stack Coder | Module Lead | 15 upvotes 995.2K views
Codacy
Codacy
SonarQube
SonarQube
React
React
React Router
React Router
React Native
React Native
JavaScript
JavaScript
jQuery
jQuery
jQuery UI
jQuery UI
jQuery Mobile
jQuery Mobile
Bootstrap
Bootstrap
Java
Java
Node.js
Node.js
MySQL
MySQL
Hibernate
Hibernate
Heroku
Heroku
Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
Solr
Solr
Elasticsearch
Elasticsearch
Amazon Route 53
Amazon Route 53
Microsoft Azure
Microsoft Azure
Amazon EC2 Container Service
Amazon EC2 Container Service
Apache Maven
Apache Maven
Git
Git
Docker
Docker

I'm planning to create a web application and also a mobile application to provide a very good shopping experience to the end customers. Shortly, my application will be aggregate the product details from difference sources and giving a clear picture to the user that when and where to buy that product with best in Quality and cost.

I have planned to develop this in many milestones for adding N number of features and I have picked my first part to complete the core part (aggregate the product details from different sources).

As per my work experience and knowledge, I have chosen the followings stacks to this mission.

UI: I would like to develop this application using React, React Router and React Native since I'm a little bit familiar on this and also most importantly these will help on developing both web and mobile apps. In addition, I'm gonna use the stacks JavaScript, jQuery, jQuery UI, jQuery Mobile, Bootstrap wherever required.

Service: I have planned to use Java as the main business layer language as I have 7+ years of experience on this I believe I can do better work using Java than other languages. In addition, I'm thinking to use the stacks Node.js.

Database and ORM: I'm gonna pick MySQL as DB and Hibernate as ORM since I have a piece of good knowledge and also work experience on this combination.

Search Engine: I need to deal with a large amount of product data and it's in-detailed info to provide enough details to end user at the same time I need to focus on the performance area too. so I have decided to use Solr as a search engine for product search and suggestions. In addition, I'm thinking to replace Solr by Elasticsearch once explored/reviewed enough about Elasticsearch.

Host: As of now, my plan to complete the application with decent features first and deploy it in a free hosting environment like Docker and Heroku and then once it is stable then I have planned to use the AWS products Amazon S3, EC2, Amazon RDS and Amazon Route 53. I'm not sure about Microsoft Azure that what is the specialty in it than Heroku and Amazon EC2 Container Service. Anyhow, I will do explore these once again and pick the best suite one for my requirement once I reached this level.

Build and Repositories: I have decided to choose Apache Maven and Git as these are my favorites and also so popular on respectively build and repositories.

Additional Utilities :) - I would like to choose Codacy for code review as their Startup plan will be very helpful to this application. I'm already experienced with Google CheckStyle and SonarQube even I'm looking something on Codacy.

Happy Coding! Suggestions are welcome! :)

Thanks, Ganesa

See more
Amazon RDS for Aurora logo

Amazon RDS for Aurora

412
294
48
412
294
+ 1
48
MySQL and PostgreSQL compatible relational database with several times better performance
Amazon RDS for Aurora logo
Amazon RDS for Aurora
VS
TempoDB logo
TempoDB

related Amazon RDS for Aurora posts

Julien DeFrance
Julien DeFrance
Principal Software Engineer at Tophatter | 16 upvotes 1.3M views
atSmartZipSmartZip
Rails
Rails
Rails API
Rails API
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Capistrano
Capistrano
Docker
Docker
Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
MySQL
MySQL
Amazon RDS for Aurora
Amazon RDS for Aurora
Amazon ElastiCache
Amazon ElastiCache
Memcached
Memcached
Amazon CloudFront
Amazon CloudFront
Segment
Segment
Zapier
Zapier
Amazon Redshift
Amazon Redshift
Amazon Quicksight
Amazon Quicksight
Superset
Superset
Elasticsearch
Elasticsearch
Amazon Elasticsearch Service
Amazon Elasticsearch Service
New Relic
New Relic
AWS Lambda
AWS Lambda
Node.js
Node.js
Ruby
Ruby
Amazon DynamoDB
Amazon DynamoDB
Algolia
Algolia

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
Tim Specht
Tim Specht
鈥嶤o-Founder and CTO at Dubsmash | 13 upvotes 89.1K views
atDubsmashDubsmash
PostgreSQL
PostgreSQL
Heroku
Heroku
Amazon RDS
Amazon RDS
Amazon DynamoDB
Amazon DynamoDB
Redis
Redis
Amazon RDS for Aurora
Amazon RDS for Aurora
#SqlDatabaseAsAService
#NosqlDatabaseAsAService
#Databases
#PlatformAsAService

Over the years we have added a wide variety of different storages to our stack including PostgreSQL (some hosted by Heroku, some by Amazon RDS) for storing relational data, Amazon DynamoDB to store non-relational data like recommendations & user connections, or Redis to hold pre-aggregated data to speed up API endpoints.

Since we started running Postgres ourselves on RDS instead of only using the managed offerings of Heroku, we've gained additional flexibility in scaling our application while reducing costs at the same time.

We are also heavily testing Amazon RDS for Aurora in its Postgres-compatible version and will also give the new release of Aurora Serverless a try!

#SqlDatabaseAsAService #NosqlDatabaseAsAService #Databases #PlatformAsAService

See more
Google Cloud SQL logo

Google Cloud SQL

346
258
45
346
258
+ 1
45
Store and manage data using a fully-managed, relational MySQL database
Google Cloud SQL logo
Google Cloud SQL
VS
TempoDB logo
TempoDB

related Google Cloud SQL posts

Ido Shamun
Ido Shamun
at The Elegant Monkeys | 5 upvotes 14.8K views
atDailyDaily
MySQL
MySQL
Node.js
Node.js
Go
Go
Google Cloud SQL
Google Cloud SQL
#Backend

As far as the backend goes, we first had to decide which database will power most of Daily services. Considering relational databases vs document datbases, we decided that the relational model is a better fit for Daily as we have a lot of connections between the different entities. At the time MySQL was the only service available on Google Cloud SQL so this was out choice. In terms of #backend development Node.js powers most of our services, thanks to its amazing ecosystem there are a lot of modules publicly available to shorten the development time. Go is for the light services which are all about performance and delivering quickly the response, such as our redirector service.

See more
Azure SQL Database logo

Azure SQL Database

136
93
6
136
93
+ 1
6
Managed, intelligent SQL in the cloud
Azure SQL Database logo
Azure SQL Database
VS
TempoDB logo
TempoDB
Books logo

Books

33
41
0
33
41
+ 1
0
An immutable double-entry accounting database service (by Square)
    Be the first to leave a pro
    Books logo
    Books
    VS
    TempoDB logo
    TempoDB
    DigitalOcean Managed Databases logo

    DigitalOcean Managed Databases

    32
    34
    0
    32
    34
    + 1
    0
    Fully hosted and managed database engines for your applications, so you can focus on building, not patching
      Be the first to leave a pro
      DigitalOcean Managed Databases logo
      DigitalOcean Managed Databases
      VS
      TempoDB logo
      TempoDB
      ClearDB logo

      ClearDB

      22
      27
      28
      22
      27
      + 1
      28
      Fault tolerant database-as-a-service in the cloud for your MySQL powered applications.
      ClearDB logo
      ClearDB
      VS
      TempoDB logo
      TempoDB