Alternatives to Docker Hub logo

Alternatives to Docker Hub

Quay.io, Docker Cloud, Amazon ECR, Kubernetes, and GitHub are the most popular alternatives and competitors to Docker Hub.
222
7

What is Docker Hub and what are its top alternatives?

It is the world's easiest way to create, manage, and deliver your teams' container applications. It is the perfect home for your teams' applications.
Docker Hub is a tool in the Container Tools category of a tech stack.

Top Alternatives to Docker Hub

  • Quay.io
    Quay.io

    Simply upload your Dockerfile (and any additional files it needs) and we'll build your Dockerfile into an image and push it to your repository. ...

  • Docker Cloud
    Docker Cloud

    Docker Cloud is the best way to deploy and manage Dockerized applications. Docker Cloud makes it easy for new Docker users to manage and deploy the full spectrum of applications, from single container apps to distributed microservices stacks, to any cloud or on-premises infrastructure. ...

  • Amazon ECR
    Amazon ECR

    It is a fully managed container registry that makes it easy to store, manage, share, and deploy your container images and artifacts anywhere. It eliminates the need to operate your own container repositories or worry about scaling the underlying infrastructure. ...

  • Kubernetes
    Kubernetes

    Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

  • Docker
    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...

  • jFrog
    jFrog

    Host, manage and proxy artifacts using the best Docker Registry, Maven Repository, Gradle repository, NuGet repository, Ruby repository, Debian repository npm repository, Yum repository. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

Docker Hub alternatives & related posts

Quay.io logo

Quay.io

64
86
7
Secure hosting for private Docker repositories
64
86
+ 1
7
PROS OF QUAY.IO
  • 6
    Great UI
  • 1
    API
  • 0
    Docker cloud repositories are public by default. Bad
CONS OF QUAY.IO
    Be the first to leave a con

    related Quay.io posts

    Docker Cloud logo

    Docker Cloud

    78
    127
    11
    A hosted service for Docker container management and deployment
    78
    127
    + 1
    11
    PROS OF DOCKER CLOUD
    • 9
      Easy to use
    • 2
      Seamless transition from docker compose
    CONS OF DOCKER CLOUD
      Be the first to leave a con

      related Docker Cloud posts

      Amazon ECR logo

      Amazon ECR

      361
      164
      5
      Share and deploy container software, publicly or privately
      361
      164
      + 1
      5
      PROS OF AMAZON ECR
      • 2
        Highly secure as policies can be configured to manage p
      • 1
        No upfront fees or commitments. You pay only for the am
      • 1
        Familiar to AWS users and easy to use
      • 1
        Tight integration with Amazon ECS and the Docker CLI, a
      CONS OF AMAZON ECR
      • 1
        Potentially expensive if the containers being deployed
      • 1
        Difficult to use with docker client as it requires crea
      • 1
        Lack of insight into registry usage

      related Amazon ECR posts

      Shubham Chadokar
      Software Engineer Specialist at Kaleyra · | 6 upvotes · 121.3K views

      I have created a SaaS application. 1 backend service and 2 frontend services, all 3 run on different ports. I am using Amazon ECR images to deploy them on the EC2 server. My code is on GitHub. I want to automate this deployment process. How can I do this, and What tech stack should I use? It should be in sync with what I am currently using. On merge to master, it should build push the image to ECR and then later deploy again in the EC2 with the latest image. Maybe GitHub Actions or AWS CodePipeline would be ideal. Thanks, Shubham

      See more
      Shared insights
      on
      Amazon ECRAmazon ECRDocker HubDocker Hub

      We have been using Docker Hub free plan for some time, which had automated builds feature included in the free plan. Recently it has been removed from the free plan. Therefore we have thought to either go ahead with a paid plan of Docker Hub, which includes automated builds feature or migrate to use Amazon ECR as the container registry management solution. Since we already use some AWS services, going ahead with Amazon ECR is a viable solution. I am a bit confused as to what would be the best choice going ahead. Please advice...!

      See more
      Kubernetes logo

      Kubernetes

      59.8K
      51.8K
      681
      Manage a cluster of Linux containers as a single system to accelerate Dev and simplify Ops
      59.8K
      51.8K
      + 1
      681
      PROS OF KUBERNETES
      • 166
        Leading docker container management solution
      • 129
        Simple and powerful
      • 107
        Open source
      • 76
        Backed by google
      • 58
        The right abstractions
      • 25
        Scale services
      • 20
        Replication controller
      • 11
        Permission managment
      • 9
        Supports autoscaling
      • 8
        Simple
      • 8
        Cheap
      • 6
        Self-healing
      • 5
        Open, powerful, stable
      • 5
        Reliable
      • 5
        No cloud platform lock-in
      • 5
        Promotes modern/good infrascture practice
      • 4
        Scalable
      • 4
        Quick cloud setup
      • 3
        Custom and extensibility
      • 3
        Captain of Container Ship
      • 3
        Cloud Agnostic
      • 3
        Backed by Red Hat
      • 3
        Runs on azure
      • 3
        A self healing environment with rich metadata
      • 2
        Everything of CaaS
      • 2
        Gke
      • 2
        Golang
      • 2
        Easy setup
      • 2
        Expandable
      • 2
        Sfg
      CONS OF KUBERNETES
      • 16
        Steep learning curve
      • 15
        Poor workflow for development
      • 8
        Orchestrates only infrastructure
      • 4
        High resource requirements for on-prem clusters
      • 2
        Too heavy for simple systems
      • 1
        Additional vendor lock-in (Docker)
      • 1
        More moving parts to secure
      • 1
        Additional Technology Overhead

      related Kubernetes posts

      Conor Myhrvold
      Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 12.6M views

      How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

      Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

      Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

      https://eng.uber.com/distributed-tracing/

      (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

      Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

      See more
      Yshay Yaacobi

      Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

      Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

      After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

      See more
      GitHub logo

      GitHub

      285.6K
      249.5K
      10.3K
      Powerful collaboration, review, and code management for open source and private development projects
      285.6K
      249.5K
      + 1
      10.3K
      PROS OF GITHUB
      • 1.8K
        Open source friendly
      • 1.5K
        Easy source control
      • 1.3K
        Nice UI
      • 1.1K
        Great for team collaboration
      • 867
        Easy setup
      • 504
        Issue tracker
      • 487
        Great community
      • 483
        Remote team collaboration
      • 449
        Great way to share
      • 442
        Pull request and features planning
      • 147
        Just works
      • 132
        Integrated in many tools
      • 122
        Free Public Repos
      • 116
        Github Gists
      • 113
        Github pages
      • 83
        Easy to find repos
      • 62
        Open source
      • 60
        Easy to find projects
      • 60
        It's free
      • 56
        Network effect
      • 49
        Extensive API
      • 43
        Organizations
      • 42
        Branching
      • 34
        Developer Profiles
      • 32
        Git Powered Wikis
      • 30
        Great for collaboration
      • 24
        It's fun
      • 23
        Clean interface and good integrations
      • 22
        Community SDK involvement
      • 20
        Learn from others source code
      • 16
        Because: Git
      • 14
        It integrates directly with Azure
      • 10
        Standard in Open Source collab
      • 10
        Newsfeed
      • 8
        Fast
      • 8
        Beautiful user experience
      • 8
        It integrates directly with Hipchat
      • 7
        Easy to discover new code libraries
      • 6
        Smooth integration
      • 6
        Integrations
      • 6
        Graphs
      • 6
        Nice API
      • 6
        It's awesome
      • 6
        Cloud SCM
      • 5
        Quick Onboarding
      • 5
        Remarkable uptime
      • 5
        CI Integration
      • 5
        Reliable
      • 5
        Hands down best online Git service available
      • 4
        Version Control
      • 4
        Unlimited Public Repos at no cost
      • 4
        Simple but powerful
      • 4
        Loved by developers
      • 4
        Free HTML hosting
      • 4
        Uses GIT
      • 4
        Security options
      • 4
        Easy to use and collaborate with others
      • 3
        Easy deployment via SSH
      • 3
        Ci
      • 3
        IAM
      • 3
        Nice to use
      • 2
        Easy and efficient maintainance of the projects
      • 2
        Beautiful
      • 2
        Self Hosted
      • 2
        Issues tracker
      • 2
        Easy source control and everything is backed up
      • 2
        Never dethroned
      • 2
        All in one development service
      • 2
        Good tools support
      • 2
        Free HTML hostings
      • 2
        IAM integration
      • 2
        Very Easy to Use
      • 2
        Easy to use
      • 2
        Leads the copycats
      • 2
        Free private repos
      • 1
        Profound
      • 1
        Dasf
      CONS OF GITHUB
      • 55
        Owned by micrcosoft
      • 38
        Expensive for lone developers that want private repos
      • 15
        Relatively slow product/feature release cadence
      • 10
        API scoping could be better
      • 9
        Only 3 collaborators for private repos
      • 4
        Limited featureset for issue management
      • 3
        Does not have a graph for showing history like git lens
      • 2
        GitHub Packages does not support SNAPSHOT versions
      • 1
        No multilingual interface
      • 1
        Takes a long time to commit
      • 1
        Expensive

      related GitHub posts

      Johnny Bell

      I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

      I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

      I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

      Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

      Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

      With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

      If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

      See more

      Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

      Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

      Check Out My Architecture: CLICK ME

      Check out the GitHub repo attached

      See more
      Docker logo

      Docker

      174.3K
      140.1K
      3.9K
      Enterprise Container Platform for High-Velocity Innovation.
      174.3K
      140.1K
      + 1
      3.9K
      PROS OF DOCKER
      • 823
        Rapid integration and build up
      • 692
        Isolation
      • 521
        Open source
      • 505
        Testa­bil­i­ty and re­pro­ducibil­i­ty
      • 460
        Lightweight
      • 218
        Standardization
      • 185
        Scalable
      • 106
        Upgrading / down­grad­ing / ap­pli­ca­tion versions
      • 88
        Security
      • 85
        Private paas environments
      • 34
        Portability
      • 26
        Limit resource usage
      • 17
        Game changer
      • 16
        I love the way docker has changed virtualization
      • 14
        Fast
      • 12
        Concurrency
      • 8
        Docker's Compose tools
      • 6
        Fast and Portable
      • 6
        Easy setup
      • 5
        Because its fun
      • 4
        Makes shipping to production very simple
      • 3
        It's dope
      • 3
        Highly useful
      • 2
        Does a nice job hogging memory
      • 2
        Open source and highly configurable
      • 2
        Simplicity, isolation, resource effective
      • 2
        MacOS support FAKE
      • 2
        Its cool
      • 2
        Docker hub for the FTW
      • 2
        HIgh Throughput
      • 2
        Very easy to setup integrate and build
      • 2
        Package the environment with the application
      • 2
        Super
      • 0
        Asdfd
      CONS OF DOCKER
      • 8
        New versions == broken features
      • 6
        Unreliable networking
      • 6
        Documentation not always in sync
      • 4
        Moves quickly
      • 3
        Not Secure

      related Docker posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.2M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Tymoteusz Paul
      Devops guy at X20X Development LTD · | 23 upvotes · 9.7M views

      Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

      It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

      I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

      We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

      If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

      The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

      Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

      See more
      jFrog logo

      jFrog

      127
      103
      0
      Universal Artifact Management
      127
      103
      + 1
      0
      PROS OF JFROG
        Be the first to leave a pro
        CONS OF JFROG
          Be the first to leave a con

          related jFrog posts

          Git logo

          Git

          297.3K
          178.6K
          6.6K
          Fast, scalable, distributed revision control system
          297.3K
          178.6K
          + 1
          6.6K
          PROS OF GIT
          • 1.4K
            Distributed version control system
          • 1.1K
            Efficient branching and merging
          • 959
            Fast
          • 845
            Open source
          • 726
            Better than svn
          • 368
            Great command-line application
          • 306
            Simple
          • 291
            Free
          • 232
            Easy to use
          • 222
            Does not require server
          • 27
            Distributed
          • 22
            Small & Fast
          • 18
            Feature based workflow
          • 15
            Staging Area
          • 13
            Most wide-spread VSC
          • 11
            Role-based codelines
          • 11
            Disposable Experimentation
          • 7
            Frictionless Context Switching
          • 6
            Data Assurance
          • 5
            Efficient
          • 4
            Just awesome
          • 3
            Github integration
          • 3
            Easy branching and merging
          • 2
            Compatible
          • 2
            Flexible
          • 2
            Possible to lose history and commits
          • 1
            Rebase supported natively; reflog; access to plumbing
          • 1
            Light
          • 1
            Team Integration
          • 1
            Fast, scalable, distributed revision control system
          • 1
            Easy
          • 1
            Flexible, easy, Safe, and fast
          • 1
            CLI is great, but the GUI tools are awesome
          • 1
            It's what you do
          • 0
            Phinx
          CONS OF GIT
          • 16
            Hard to learn
          • 11
            Inconsistent command line interface
          • 9
            Easy to lose uncommitted work
          • 8
            Worst documentation ever possibly made
          • 5
            Awful merge handling
          • 3
            Unexistent preventive security flows
          • 3
            Rebase hell
          • 2
            Ironically even die-hard supporters screw up badly
          • 2
            When --force is disabled, cannot rebase
          • 1
            Doesn't scale for big data

          related Git posts

          Simon Reymann
          Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.2M views

          Our whole DevOps stack consists of the following tools:

          • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
          • Respectively Git as revision control system
          • SourceTree as Git GUI
          • Visual Studio Code as IDE
          • CircleCI for continuous integration (automatize development process)
          • Prettier / TSLint / ESLint as code linter
          • SonarQube as quality gate
          • Docker as container management (incl. Docker Compose for multi-container application management)
          • VirtualBox for operating system simulation tests
          • Kubernetes as cluster management for docker containers
          • Heroku for deploying in test environments
          • nginx as web server (preferably used as facade server in production environment)
          • SSLMate (using OpenSSL) for certificate management
          • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
          • PostgreSQL as preferred database system
          • Redis as preferred in-memory database/store (great for caching)

          The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

          • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
          • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
          • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
          • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
          • Scalability: All-in-one framework for distributed systems.
          • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
          See more
          Tymoteusz Paul
          Devops guy at X20X Development LTD · | 23 upvotes · 9.7M views

          Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

          It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

          I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

          We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

          If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

          The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

          Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

          See more