Alternatives to AWS OpsWorks logo

Alternatives to AWS OpsWorks

Chef, AWS Elastic Beanstalk, AWS Config, AWS CloudFormation, and AWS CodeDeploy are the most popular alternatives and competitors to AWS OpsWorks.
180
104
+ 1
42

What is AWS OpsWorks and what are its top alternatives?

Start from templates for common technologies like Ruby, Node.JS, PHP, and Java, or build your own using Chef recipes to install software packages and perform any task that you can script. AWS OpsWorks can scale your application using automatic load-based or time-based scaling and maintain the health of your application by detecting failed instances and replacing them. You have full control of deployments and automation of each component 
AWS OpsWorks is a tool in the Server Configuration and Automation category of a tech stack.

AWS OpsWorks alternatives & related posts

related Chef posts

Marcel Kornegoor
Marcel Kornegoor
CTO at AT Computing · | 5 upvotes · 268K views
atAT ComputingAT Computing
Linux
Linux
Ubuntu
Ubuntu
CentOS
CentOS
Debian
Debian
Red Hat Enterprise Linux
Red Hat Enterprise Linux
Fedora
Fedora
Visual Studio Code
Visual Studio Code
Jenkins
Jenkins
VirtualBox
VirtualBox
GitHub
GitHub
Docker
Docker
Kubernetes
Kubernetes
Google Compute Engine
Google Compute Engine
Ansible
Ansible
Puppet Labs
Puppet Labs
Chef
Chef
Python
Python
#ATComputing

Since #ATComputing is a vendor independent Linux and open source specialist, we do not have a favorite Linux distribution. We mainly use Ubuntu , Centos Debian , Red Hat Enterprise Linux and Fedora during our daily work. These are also the distributions we see most often used in our customers environments.

For our #ci/cd training, we use an open source pipeline that is build around Visual Studio Code , Jenkins , VirtualBox , GitHub , Docker Kubernetes and Google Compute Engine.

For #ServerConfigurationAndAutomation, we have embraced and contributed to Ansible mainly because it is not only flexible and powerful, but also straightforward and easier to learn than some other (open source) solutions. On the other hand: we are not affraid of Puppet Labs and Chef either.

Currently, our most popular #programming #Language course is Python . The reason Python is so popular has to do with it's versatility, but also with its low complexity. This helps sysadmins to write scripts or simple programs to make their job less repetitive and automating things more fun. Python is also widely used to communicate with (REST) API's and for data analysis.

See more

related AWS Elastic Beanstalk posts

Julien DeFrance
Julien DeFrance
Principal Software Engineer at Tophatter · | 16 upvotes · 1.1M views
atSmartZipSmartZip
Rails
Rails
Rails API
Rails API
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Capistrano
Capistrano
Docker
Docker
Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
MySQL
MySQL
Amazon RDS for Aurora
Amazon RDS for Aurora
Amazon ElastiCache
Amazon ElastiCache
Memcached
Memcached
Amazon CloudFront
Amazon CloudFront
Segment
Segment
Zapier
Zapier
Amazon Redshift
Amazon Redshift
Amazon Quicksight
Amazon Quicksight
Superset
Superset
Elasticsearch
Elasticsearch
Amazon Elasticsearch Service
Amazon Elasticsearch Service
New Relic
New Relic
AWS Lambda
AWS Lambda
Node.js
Node.js
Ruby
Ruby
Amazon DynamoDB
Amazon DynamoDB
Algolia
Algolia

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Heroku
Heroku
Ruby
Ruby
Rails
Rails
Amazon RDS for PostgreSQL
Amazon RDS for PostgreSQL
MariaDB
MariaDB
Microsoft SQL Server
Microsoft SQL Server
Amazon RDS
Amazon RDS
AWS Lambda
AWS Lambda
Python
Python
Redis
Redis
Memcached
Memcached
AWS Elastic Load Balancing (ELB)
AWS Elastic Load Balancing (ELB)
Amazon Elasticsearch Service
Amazon Elasticsearch Service
Amazon ElastiCache
Amazon ElastiCache

We initially started out with Heroku as our PaaS provider due to a desire to use it by our original developer for our Ruby on Rails application/website at the time. We were finding response times slow, it was painfully slow, sometimes taking 10 seconds to start loading the main page. Moving up to the next "compute" level was going to be very expensive.

We moved our site over to AWS Elastic Beanstalk , not only did response times on the site practically become instant, our cloud bill for the application was cut in half.

In database world we are currently using Amazon RDS for PostgreSQL also, we have both MariaDB and Microsoft SQL Server both hosted on Amazon RDS. The plan is to migrate to AWS Aurora Serverless for all 3 of those database systems.

Additional services we use for our public applications: AWS Lambda, Python, Redis, Memcached, AWS Elastic Load Balancing (ELB), Amazon Elasticsearch Service, Amazon ElastiCache

See more
AWS Config logo

AWS Config

29
27
4
29
27
+ 1
4
Config gives you a detailed inventory of your AWS resources and their current configuration, and continuously records configuration...
AWS Config logo
AWS Config
VS
AWS OpsWorks logo
AWS OpsWorks

related AWS CloudFormation posts

Joseph Kunzler
Joseph Kunzler
DevOps Engineer at Tillable · | 9 upvotes · 71.3K views
atTillableTillable
Amazon S3
Amazon S3
Amazon EC2
Amazon EC2
AWS Elastic Load Balancing (ELB)
AWS Elastic Load Balancing (ELB)
AWS CloudFormation
AWS CloudFormation
Terraform
Terraform

We use Terraform because we needed a way to automate the process of building and deploying feature branches. We wanted to hide the complexity such that when a dev creates a PR, it triggers a build and deployment without the dev having to worry about any of the 'plumbing' going on behind the scenes. Terraform allows us to automate the process of provisioning DNS records, Amazon S3 buckets, Amazon EC2 instances and AWS Elastic Load Balancing (ELB)'s. It also makes it easy to tear it all down when finished. We also like that it supports multiple clouds, which is why we chose to use it over AWS CloudFormation.

See more
Terraform
Terraform
Google Cloud Deployment Manager
Google Cloud Deployment Manager
AWS CloudFormation
AWS CloudFormation

I use Terraform because it hits the level of abstraction pocket of being high-level and flexible, and is agnostic to cloud platforms. Creating complex infrastructure components for a solution with a UI console is tedious to repeat. Using low-level APIs are usually specific to cloud platforms, and you still have to build your own tooling for deploying, state management, and destroying infrastructure.

However, Terraform is usually slower to implement new services compared to cloud-specific APIs. It's worth the trade-off though, especially if you're multi-cloud. I heard someone say, "We want to preference a cloud, not lock in to one." Terraform builds on that claim.

Terraform Google Cloud Deployment Manager AWS CloudFormation

See more
AWS CodeDeploy logo

AWS CodeDeploy

197
140
38
197
140
+ 1
38
Coordinate application deployments to Amazon EC2 instances
AWS CodeDeploy logo
AWS CodeDeploy
VS
AWS OpsWorks logo
AWS OpsWorks

related AWS CodeDeploy posts

Chris McFadden
Chris McFadden
VP, Engineering at SparkPost · | 9 upvotes · 63.8K views
atSparkPostSparkPost
AWS CodeBuild
AWS CodeBuild
AWS CodeDeploy
AWS CodeDeploy
Amazon EC2 Container Service
Amazon EC2 Container Service
AWS Lambda
AWS Lambda
GitHub
GitHub

The recent move of our CI/CD tooling to AWS CodeBuild / AWS CodeDeploy (with GitHub ) as well as moving to Amazon EC2 Container Service / AWS Lambda for our deployment architecture for most of our services has helped us significantly reduce our deployment times while improving both feature velocity and overall reliability. In one extreme case, we got one service down from 90 minutes to a very reasonable 15 minutes. Container-based build and deployments have made so many things simpler and easier and the integration between the tools has been helpful. There is still some work to do on our service mesh & API proxy approach to further simplify our environment.

See more
Sathish Raju
Sathish Raju
Founder/CTO at Kloudio · | 5 upvotes · 24.5K views
atKloudioKloudio
Node.js
Node.js
Angular 2
Angular 2
React
React
TypeScript
TypeScript
Docker
Docker
AWS CodePipeline
AWS CodePipeline
AWS CodeDeploy
AWS CodeDeploy
AWS Lambda
AWS Lambda
#Kloudio.
#AWS

At Kloud.io we use Node.js for our backend Microservices and Angular 2 for the frontend. We also use React for a couple of our internal applications. Writing services in Node.js in TypeScript improved developer productivity and we could capture bugs way before they can occur in the production. The use of Angular 2 in our production environment reduced the time to release any new features. At the same time, we are also exploring React by using it in our internal tools. So far we enjoyed what React has to offer. We are an enterprise SAAS product and also offer an on-premise or hybrid cloud version of #kloudio. We heavily use Docker for shipping our on-premise version. We also use Docker internally for automated testing. Using Docker reduced the install time errors in customer environments. Our cloud version is deployed in #AWS. We use AWS CodePipeline and AWS CodeDeploy for our CI/CD. We also use AWS Lambda for automation jobs.

See more
Ansible logo

Ansible

6.1K
4.6K
1.2K
6.1K
4.6K
+ 1
1.2K
Radically simple configuration-management, application deployment, task-execution, and multi-node orchestration engine
Ansible logo
Ansible
VS
AWS OpsWorks logo
AWS OpsWorks

related Ansible posts

Tymoteusz Paul
Tymoteusz Paul
Devops guy at X20X Development LTD · | 19 upvotes · 865.9K views
Vagrant
Vagrant
VirtualBox
VirtualBox
Ansible
Ansible
Elasticsearch
Elasticsearch
Kibana
Kibana
Logstash
Logstash
TeamCity
TeamCity
Jenkins
Jenkins
Slack
Slack
Apache Maven
Apache Maven
Vault
Vault
Git
Git
Docker
Docker
CircleCI
CircleCI
LXC
LXC
Amazon EC2
Amazon EC2

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Pedro Arnal Puente
Pedro Arnal Puente
CTO at La Cupula Music SL · | 7 upvotes · 151.3K views
atLa Cupula Music SLLa Cupula Music SL
Debian
Debian
Amazon EC2
Amazon EC2
Amazon S3
Amazon S3
Amazon RDS for Aurora
Amazon RDS for Aurora
Redis
Redis
Amazon ElastiCache
Amazon ElastiCache
Terraform
Terraform
Packer
Packer
Ansible
Ansible

Our base infrastructure is composed of Debian based servers running in Amazon EC2 , asset storage with Amazon S3 , and Amazon RDS for Aurora and Redis under Amazon ElastiCache for data storage.

We are starting to work in automated provisioning and management with Terraform , Packer , and Ansible .

See more

related Capistrano posts

Julien DeFrance
Julien DeFrance
Principal Software Engineer at Tophatter · | 16 upvotes · 1.1M views
atSmartZipSmartZip
Rails
Rails
Rails API
Rails API
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Capistrano
Capistrano
Docker
Docker
Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
MySQL
MySQL
Amazon RDS for Aurora
Amazon RDS for Aurora
Amazon ElastiCache
Amazon ElastiCache
Memcached
Memcached
Amazon CloudFront
Amazon CloudFront
Segment
Segment
Zapier
Zapier
Amazon Redshift
Amazon Redshift
Amazon Quicksight
Amazon Quicksight
Superset
Superset
Elasticsearch
Elasticsearch
Amazon Elasticsearch Service
Amazon Elasticsearch Service
New Relic
New Relic
AWS Lambda
AWS Lambda
Node.js
Node.js
Ruby
Ruby
Amazon DynamoDB
Amazon DynamoDB
Algolia
Algolia

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
Kir Shatrov
Kir Shatrov
Production Engineer at Shopify · | 13 upvotes · 64.1K views
atShopifyShopify
kubernetes-deploy
kubernetes-deploy
Shipit
Shipit
Heroku
Heroku
Capistrano
Capistrano
#BuildTestDeploy
#ContainerTools
#ApplicationHosting
#PlatformAsAService

Shipit, our deployment tool, is at the heart of Continuous Delivery at Shopify. Shipit is an orchestrator that runs and tracks progress of any deploy script that you provide for a project. It supports deploying to Rubygems, Pip, Heroku and Capistrano out of the box. For us, it's mostly kubernetes-deploy or Capistrano for legacy projects.

We use a slightly tweaked GitHub flow, with feature development going in branches and the master branch being the source of truth for the state of things in production. When your PR is ready, you add it to the Merge Queue in ShipIt. The idea behind the Merge Queue is to control the rate of code that is being merged to master branch. In the busy hours, we have many developers who want to merge the PRs, but at the same time we don't want to introduce too many changes to the system at the same time. Merge Queue limits deploys to 5-10 commits at a time, which makes it easier to identify issues and roll back in case we notice any unexpected behaviour after the deploy.

We use a browser extension to make Merge Queue play nicely with the Merge button on GitHub:

Both Shipit and kubernetes-deploy are open source, and we've heard quite a few success stories from companies who have adopted our flow.

#BuildTestDeploy #ContainerTools #ApplicationHosting #PlatformAsAService

See more

related Puppet Labs posts

Marcel Kornegoor
Marcel Kornegoor
CTO at AT Computing · | 5 upvotes · 268K views
atAT ComputingAT Computing
Linux
Linux
Ubuntu
Ubuntu
CentOS
CentOS
Debian
Debian
Red Hat Enterprise Linux
Red Hat Enterprise Linux
Fedora
Fedora
Visual Studio Code
Visual Studio Code
Jenkins
Jenkins
VirtualBox
VirtualBox
GitHub
GitHub
Docker
Docker
Kubernetes
Kubernetes
Google Compute Engine
Google Compute Engine
Ansible
Ansible
Puppet Labs
Puppet Labs
Chef
Chef
Python
Python
#ATComputing

Since #ATComputing is a vendor independent Linux and open source specialist, we do not have a favorite Linux distribution. We mainly use Ubuntu , Centos Debian , Red Hat Enterprise Linux and Fedora during our daily work. These are also the distributions we see most often used in our customers environments.

For our #ci/cd training, we use an open source pipeline that is build around Visual Studio Code , Jenkins , VirtualBox , GitHub , Docker Kubernetes and Google Compute Engine.

For #ServerConfigurationAndAutomation, we have embraced and contributed to Ansible mainly because it is not only flexible and powerful, but also straightforward and easier to learn than some other (open source) solutions. On the other hand: we are not affraid of Puppet Labs and Chef either.

Currently, our most popular #programming #Language course is Python . The reason Python is so popular has to do with it's versatility, but also with its low complexity. This helps sysadmins to write scripts or simple programs to make their job less repetitive and automating things more fun. Python is also widely used to communicate with (REST) API's and for data analysis.

See more
StackShare Editors
StackShare Editors
Salt
Salt
Puppet Labs
Puppet Labs
Ansible
Ansible

By 2014, the DevOps team at Lyft decided to port their infrastructure code from Puppet to Salt. At that point, the Puppet code based included around "10,000 lines of spaghetti-code,” which was unfamiliar and challenging to the relatively new members of the DevOps team.

“The DevOps team felt that the Puppet infrastructure was too difficult to pick up quickly and would be impossible to introduce to [their] developers as the tool they’d use to manage their own services.”

To determine a path forward, the team assessed both Ansible and Salt, exploring four key areas: simplicity/ease of use, maturity, performance, and community.

They found that “Salt’s execution and state module support is more mature than Ansible’s, overall,” and that “Salt was faster than Ansible for state/playbook runs.” And while both have high levels of community support, Salt exceeded expectations in terms of friendless and responsiveness to opened issues.

See more