Alternatives to Pilosa logo

Alternatives to Pilosa

Elasticsearch, Druid, Apache Spark, Splunk, and Apache Flink are the most popular alternatives and competitors to Pilosa.
1
11
+ 1
0

What is Pilosa and what are its top alternatives?

Pilosa is an open source, distributed bitmap index that dramatically accelerates queries across multiple, massive data sets.
Pilosa is a tool in the Big Data Tools category of a tech stack.
Pilosa is an open source tool with 2.2K GitHub stars and 210 GitHub forks. Here’s a link to Pilosa's open source repository on GitHub

Top Alternatives to Pilosa

  • Elasticsearch

    Elasticsearch

    Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack). ...

  • Druid

    Druid

    Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations. ...

  • Apache Spark

    Apache Spark

    Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. ...

  • Splunk

    Splunk

    It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data. ...

  • Apache Flink

    Apache Flink

    Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala. ...

  • Amazon Athena

    Amazon Athena

    Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run. ...

  • Apache Hive

    Apache Hive

    Hive facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage. ...

  • Presto

    Presto

    Distributed SQL Query Engine for Big Data

Pilosa alternatives & related posts

Elasticsearch logo

Elasticsearch

26.1K
19.7K
1.6K
Open Source, Distributed, RESTful Search Engine
26.1K
19.7K
+ 1
1.6K
PROS OF ELASTICSEARCH
  • 321
    Powerful api
  • 311
    Great search engine
  • 231
    Open source
  • 213
    Restful
  • 200
    Near real-time search
  • 96
    Free
  • 83
    Search everything
  • 54
    Easy to get started
  • 45
    Analytics
  • 26
    Distributed
  • 6
    Fast search
  • 5
    More than a search engine
  • 3
    Great docs
  • 3
    Awesome, great tool
  • 3
    Easy to scale
  • 2
    Document Store
  • 2
    Nosql DB
  • 2
    Great piece of software
  • 2
    Great customer support
  • 2
    Intuitive API
  • 2
    Fast
  • 2
    Easy setup
  • 2
    Highly Available
  • 1
    Not stable
  • 1
    Scalability
  • 1
    Open
  • 1
    Reliable
  • 1
    Github
  • 1
    Elaticsearch
  • 1
    Actively developing
  • 1
    Responsive maintainers on GitHub
  • 1
    Ecosystem
  • 1
    Easy to get hot data
  • 1
    Potato
  • 0
    Community
CONS OF ELASTICSEARCH
  • 6
    Resource hungry
  • 6
    Diffecult to get started
  • 5
    Expensive
  • 3
    Hard to keep stable at large scale

related Elasticsearch posts

Tim Abbott

We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

I can't recommend it highly enough.

See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 4.6M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Druid logo

Druid

312
683
29
Fast column-oriented distributed data store
312
683
+ 1
29
PROS OF DRUID
  • 14
    Real Time Aggregations
  • 5
    Batch and Real-Time Ingestion
  • 4
    OLAP
  • 3
    OLAP + OLTP
  • 2
    Combining stream and historical analytics
  • 1
    OLTP
CONS OF DRUID
  • 3
    Limited sql support
  • 2
    Joins are not supported well
  • 1
    Complexity

related Druid posts

Umair Iftikhar
Technical Architect at Vappar · | 3 upvotes · 138.3K views

Developing a solution that collects Telemetry Data from different devices, nearly 1000 devices minimum and maximum 12000. Each device is sending 2 packets in 1 second. This is time-series data, and this data definition and different reports are saved on PostgreSQL. Like Building information, maintenance records, etc. I want to know about the best solution. This data is required for Math and ML to run different algorithms. Also, data is raw without definitions and information stored in PostgreSQL. Initially, I went with TimescaleDB due to PostgreSQL support, but to increase in sites, I started facing many issues with timescale DB in terms of flexibility of storing data.

My major requirement is also the replication of the database for reporting and different purposes. You may also suggest other options other than Druid and Cassandra. But an open source solution is appreciated.

See more
Apache Spark logo

Apache Spark

2.4K
2.8K
132
Fast and general engine for large-scale data processing
2.4K
2.8K
+ 1
132
PROS OF APACHE SPARK
  • 58
    Open-source
  • 48
    Fast and Flexible
  • 7
    One platform for every big data problem
  • 6
    Easy to install and to use
  • 6
    Great for distributed SQL like applications
  • 3
    Works well for most Datascience usecases
  • 2
    Machine learning libratimery, Streaming in real
  • 2
    In memory Computation
  • 0
    Interactive Query
CONS OF APACHE SPARK
  • 3
    Speed

related Apache Spark posts

Eric Colson
Chief Algorithms Officer at Stitch Fix · | 21 upvotes · 2M views

The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

For more info:

#DataScience #DataStack #Data

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 7 upvotes · 1M views

Why we built Marmaray, an open source generic data ingestion and dispersal framework and library for Apache Hadoop :

Built and designed by our Hadoop Platform team, Marmaray is a plug-in-based framework built on top of the Hadoop ecosystem. Users can add support to ingest data from any source and disperse to any sink leveraging the use of Apache Spark . The name, Marmaray, comes from a tunnel in Turkey connecting Europe and Asia. Similarly, we envisioned Marmaray within Uber as a pipeline connecting data from any source to any sink depending on customer preference:

https://eng.uber.com/marmaray-hadoop-ingestion-open-source/

(Direct GitHub repo: https://github.com/uber/marmaray Kafka Kafka Manager )

See more
Splunk logo

Splunk

459
727
11
Search, monitor, analyze and visualize machine data
459
727
+ 1
11
PROS OF SPLUNK
  • 2
    API for searching logs, running reports
  • 1
    Query engine supports joining, aggregation, stats, etc
  • 1
    Query any log as key-value pairs
  • 1
    Splunk language supports string, date manip, math, etc
  • 1
    Granular scheduling and time window support
  • 1
    Alert system based on custom query results
  • 1
    Custom log parsing as well as automatic parsing
  • 1
    Dashboarding on any log contents
  • 1
    Ability to style search results into reports
  • 1
    Rich GUI for searching live logs
CONS OF SPLUNK
  • 1
    Splunk query language rich so lots to learn

related Splunk posts

Shared insights
on
KibanaKibanaSplunkSplunkGrafanaGrafana

I use Kibana because it ships with the ELK stack. I don't find it as powerful as Splunk however it is light years above grepping through log files. We previously used Grafana but found it to be annoying to maintain a separate tool outside of the ELK stack. We were able to get everything we needed from Kibana.

See more
Apache Flink logo

Apache Flink

406
638
35
Fast and reliable large-scale data processing engine
406
638
+ 1
35
PROS OF APACHE FLINK
  • 15
    Unified batch and stream processing
  • 8
    Easy to use streaming apis
  • 8
    Out-of-the box connector to kinesis,s3,hdfs
  • 3
    Open Source
  • 1
    Low latency
CONS OF APACHE FLINK
    Be the first to leave a con

    related Apache Flink posts

    Surabhi Bhawsar
    Technical Architect at Pepcus · | 7 upvotes · 546.1K views
    Shared insights
    on
    KafkaKafkaApache FlinkApache Flink

    I need to build the Alert & Notification framework with the use of a scheduled program. We will analyze the events from the database table and filter events that are falling under a day timespan and send these event messages over email. Currently, we are using Kafka Pub/Sub for messaging. The customer wants us to move on Apache Flink, I am trying to understand how Apache Flink could be fit better for us.

    See more

    I have to build a data processing application with an Apache Beam stack and Apache Flink runner on an Amazon EMR cluster. I saw some instability with the process and EMR clusters that keep going down. Here, the Apache Beam application gets inputs from Kafka and sends the accumulative data streams to another Kafka topic. Any advice on how to make the process more stable?

    See more
    Amazon Athena logo

    Amazon Athena

    384
    610
    46
    Query S3 Using SQL
    384
    610
    + 1
    46
    PROS OF AMAZON ATHENA
    • 15
      Use SQL to analyze CSV files
    • 8
      Glue crawlers gives easy Data catalogue
    • 6
      Cheap
    • 5
      Query all my data without running servers 24x7
    • 4
      No data base servers yay
    • 3
      Easy integration with QuickSight
    • 2
      Query and analyse CSV,parquet,json files in sql
    • 2
      Also glue and athena use same data catalog
    • 1
      No configuration required
    • 0
      Ad hoc checks on data made easy
    CONS OF AMAZON ATHENA
      Be the first to leave a con

      related Amazon Athena posts

      I use Amazon Athena because similar to Google BigQuery , you can store and query data easily. Especially since you can define data schema in the Glue data catalog, there's a central way to define data models.

      However, I would not recommend for batch jobs. I typically use this to check intermediary datasets in data engineering workloads. It's good for getting a look and feel of the data along its ETL journey.

      See more

      Hi all,

      Currently, we need to ingest the data from Amazon S3 to DB either Amazon Athena or Amazon Redshift. But the problem with the data is, it is in .PSV (pipe separated values) format and the size is also above 200 GB. The query performance of the timeout in Athena/Redshift is not up to the mark, too slow while compared to Google BigQuery. How would I optimize the performance and query result time? Can anyone please help me out?

      See more
      Apache Hive logo

      Apache Hive

      362
      362
      0
      Data Warehouse Software for Reading, Writing, and Managing Large Datasets
      362
      362
      + 1
      0
      PROS OF APACHE HIVE
        Be the first to leave a pro
        CONS OF APACHE HIVE
          Be the first to leave a con

          related Apache Hive posts

          Ashish Singh
          Tech Lead, Big Data Platform at Pinterest · | 36 upvotes · 881.8K views

          To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

          Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

          We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

          Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

          Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

          #BigData #AWS #DataScience #DataEngineering

          See more
          Presto logo

          Presto

          331
          843
          62
          Distributed SQL Query Engine for Big Data
          331
          843
          + 1
          62
          PROS OF PRESTO
          • 17
            Works directly on files in s3 (no ETL)
          • 12
            Open-source
          • 11
            Join multiple databases
          • 10
            Scalable
          • 7
            Gets ready in minutes
          • 5
            MPP
          CONS OF PRESTO
            Be the first to leave a con

            related Presto posts

            Ashish Singh
            Tech Lead, Big Data Platform at Pinterest · | 36 upvotes · 881.8K views

            To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

            Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

            We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

            Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

            Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

            #BigData #AWS #DataScience #DataEngineering

            See more
            Eric Colson
            Chief Algorithms Officer at Stitch Fix · | 21 upvotes · 2M views

            The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

            Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

            At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

            For more info:

            #DataScience #DataStack #Data

            See more