Apache Pinot is a fast, scalable real-time analytics database. It is a column-oriented distributed Online Analytics Processing (OLAP) database designed for high concurrency and low latency. It can scan petabyte-scale data and produce results even as fast as single-digit milliseconds.
Apache Pinot is a tool in the Databases category of a tech stack.
No pros listed yet.
No cons listed yet.
What are some alternatives to Apache Pinot?
Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.
Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.
Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.
Google BigQuery, Hadoop, Kafka, Apache Spark, Amazon Kinesis and 3 more are some of the popular tools that integrate with Apache Pinot. Here's a list of all 8 tools that integrate with Apache Pinot.