Improving Efficiency and Reducing Runtime Using S3 Read Optimization

1,227
Pinterest
Pinterest's profile on StackShare is not actively maintained, so the information here may be out of date.

By Bhalchandra Pandit | Software Engineer


Overview

We describe a novel approach we took to improving S3 read throughput and how we used it to improve the efficiency of our production jobs. The results have been very encouraging. A standalone benchmark showed a 12x improvement in S3 read throughput (from 21 MB/s to 269 MB/s). Increased throughput allowed our production jobs to finish sooner. As a result, we saw 22% reduction in vcore-hours, 23% reduction in memory-hours, and similar reduction in run time of a typical production job. Although we are happy with the results, we are exploring additional enhancements in the future. They are briefly described at the end of this blog.

Motivation

We process petabytes of data stored on Amazon S3 every day. If we inspect the relevant metrics of our MapReduce/Cascading/Scalding jobs, one thing stands out: slower than expected mapper speed. In most cases, the observed mapper speed is around 5–7 MB/sec. That speed is orders of magnitude slower compared to the observed throughput of commands such as aws s3 cp, where speeds of around 200+ MB/sec are common (observed on a c5.4xlarge instance in EC2). If we can increase the speed at which our jobs read data, our jobs will finish sooner and save us considerable time and money in the process. Given that processing is costly, these savings can add up quickly to a substantial amount.

S3 read optimization

The Problem: Throughput bottleneck in S3A

If we inspect implementation of the S3AInputStream, it is easy to notice the following potential areas of improvement:

  1. Single threaded reads: Data is read synchronously on a single thread which results in jobs spending most of the time waiting for data to be read over the network.
  2. Multiple unnecessary reopens: The S3 input stream is not seekable. A split has to be closed and reopened repeatedly each time one performs a seek or encounters a read error. The larger the split, the greater the chance of it happening. Each such reopening further slows down the overall throughput.

The Solution: Improving read throughput

Architecture

Figure 1: Components of a prefetching+caching S3 reader

Our approach to addressing the above-mentioned drawbacks includes the following:

  1. We treat a split to be made up of fixed sized blocks. The size defaults to 8 MB but is configurable.
  2. Each block is read asynchronously into memory before it can be accessed by a caller. The size of the prefetch cache (in terms of number of blocks) is configurable.
  3. A caller can only access a block that has already been prefetched into memory. That delinks a client from network flakiness and allows us to have an additional retry layer to increase the overall resiliency.
  4. Each time we encounter a seek outside of the current block, we cache the prefetched blocks in the local file system.

We further enhanced the implementation to make it a mostly lock-free producer-consumer interaction. This enhancement improves read throughput from 20 MB/sec to 269 MB/sec as measured by a standalone benchmark (see details below in Figure 2).

Sequential reads

Any data consumer that processes data sequentially (for example, a mapper) greatly benefits from this approach. While a mapper is processing currently retrieved data, data next in sequence is being prefetched asynchronously. Most of the time, data has already been pre-fetched by the time the mapper is ready for the next block. That results in a mapper spending more time doing useful work and less time waiting for data, thereby effectively increasing CPU utilization.

More efficient Parquet reads

Parquet files require non-sequential access as dictated by their on-disk format. Our initial implementation did not use a local cache. Each time there was a seek outside of the current block, we had to discard any prefetched data. That resulted in worse performance compared to the stock reader when it came to reading from Parquet files.

We observed significant improvement in the read throughput for Parquet files once we introduced the local caching of prefetched data. Currently, our implementation increases Parquet file reading throughput by 5x compared to the stock reader.

Improvement in production jobs

Improved read throughput leads to a number of efficiency improvements in production jobs.

Reduced job runtime

The overall runtime of a job is reduced because mappers spend less time waiting for data and finish sooner.

Potentially reduced number of mappers

If mappers take sufficiently less time to finish, we are able to reduce the number of mappers by increasing the split size. Such reduction in the number of mappers leads to reduced CPU wastage associated with fixed overhead of each mapper. More importantly, it can be done without increasing the run time of a job.

Improved CPU utilization

The overall CPU utilization increases because the mappers are doing the same work in less time.

Results

For now, our implementation (S3E) is in a separate git repository to allow faster iterations over enhancements. We will eventually contribute it back to the community by merging it back into S3A.

Standalone benchmark

Figure 2: Throughput of S3A vs S3E

In each case, we read a 3.5 GB S3 file sequentially and wrote it locally to a temp file. The latter part is used to simulate IO overlap that takes place during a mapper operation. The benchmark was run on a c5.9xlarge instance in EC2. We measured the total time taken to read the file and compute the effective throughput of each method.

Production run

We tested many large production jobs with the S3E implementation. Those jobs typically use tens of thousands of vcores per run. In Figure 3, we present a summary of comparison between metrics obtained with and without S3E enabled.

Measuring resource savings

We use the following method to compute resource savings resulting from this optimization.

Observed results

Figure 3: Comparison of MapReduce job resource consumption

Given the variation in the workload characteristics across production jobs, we saw vcore reduction anywhere between 6% and 45% across 30 of our most expensive jobs. The average saving was a 16% reduction in vcore days.

One thing that is attractive about our approach is that it can be enabled for a job without requiring any change to a job’s code.

Future direction

At present, we have added the enhanced implementation to a separate git repository. In the future, we would likely update the existing S3A implementation and contribute back to the community.

We are in the process of rolling out this optimization across a number of our clusters. We will publish the results in a future blog.

Given that the core implementation of S3E input stream does not depend on any Hadoop code, we can use it in any other system where large amounts of S3 data is accessed. Currently we are using this optimization to target MapReduce, Cascading, and Scalding jobs. However, we have also seen very encouraging results with Spark and Spark SQL in our preliminary evaluation.

The current implementation can use further tuning to improve its efficiency. It is also worth exploring if we can use past execution data to automatically tune the block size and the prefetch cache size used for each job.

To learn more about engineering at Pinterest, check out the rest of our Engineering Blog, and visit our Pinterest Labs site. To view and apply to open opportunities, visit our Careers page.

Pinterest
Pinterest's profile on StackShare is not actively maintained, so the information here may be out of date.
Tools mentioned in article
Open jobs at Pinterest
Sr. Staff Software Engineer, Ads ML I...
San Francisco, CA, US; , CA, US
<div class="content-intro"><p><strong>About Pinterest</strong><span style="font-weight: 400;">:&nbsp;&nbsp;</span></p> <p>Millions of people across the world come to Pinterest to find new ideas every day. It’s where they get inspiration, dream about new possibilities and plan for what matters most. Our mission is to help those people find their inspiration and create a life they love.&nbsp;In your role, you’ll be challenged to take on work that upholds this mission and pushes Pinterest forward. You’ll grow as a person and leader in your field, all the while helping&nbsp;Pinners&nbsp;make their lives better in the positive corner of the internet.</p> <p>Creating a life you love also means finding a career that celebrates the unique perspectives and experiences that you bring. As you read through the expectations of the position, consider how your skills and experiences may complement the responsibilities of the role. We encourage you to think through your relevant and transferable skills from prior experiences.</p> <p><em>Our new progressive work model is called PinFlex, a term that’s uniquely Pinterest to describe our flexible approach to living and working. Visit our </em><a href="https://www.pinterestcareers.com/pinflex/" target="_blank"><em><u>PinFlex</u></em></a><em> landing page to learn more.&nbsp;</em></p></div><p>Pinterest is one of the fastest growing online advertising platforms. Continued success depends on the machine-learning systems, which crunch thousands of signals in a few hundred milliseconds, to identify the most relevant ads to show to pinners. You’ll join a talented team with high impact, which designs high-performance and efficient ML systems, in order to power the most critical and revenue-generating models at Pinterest.</p> <p><strong>What you’ll do</strong></p> <ul> <li>Being the technical leader of the Ads ML foundation evolution movement to 2x Pinterest revenue and 5x ad performance in next 3 years.</li> <li>Opportunities to use cutting edge ML technologies including GPU and LLMs to empower 100x bigger models in next 3 years.&nbsp;</li> <li>Tons of ambiguous problems and you will be tasked with building 0 to 1 solutions for all of them.</li> </ul> <p><strong>What we’re looking for:</strong></p> <ul> <li>BS (or higher) degree in Computer Science, or a related field.</li> <li>10+ years of relevant industry experience in leading the design of large scale &amp; production ML infra systems.</li> <li>Deep knowledge with at least one state-of-art programming language (Java, C++, Python).&nbsp;</li> <li>Deep knowledge with building distributed systems or recommendation infrastructure</li> <li>Hands-on experience with at least one modeling framework (Pytorch or Tensorflow).&nbsp;</li> <li>Hands-on experience with model / hardware accelerator libraries (Cuda, Quantization)</li> <li>Strong communicator and collaborative team player.</li> </ul><div class="content-pay-transparency"><div class="pay-input"><div class="description"><p>At Pinterest we believe the workplace should be equitable, inclusive, and inspiring for every employee. In an effort to provide greater transparency, we are sharing the base salary range for this position. The position is also eligible for equity. Final salary is based on a number of factors including location, travel, relevant prior experience, or particular skills and expertise.</p> <p><em><span style="font-weight: 400;">Information regarding the culture at Pinterest and benefits available for this position can be found <a href="https://www.pinterestcareers.com/pinterest-life/" target="_blank">here</a>.</span></em></p></div><div class="title">US based applicants only</div><div class="pay-range"><span>$135,150</span><span class="divider">&mdash;</span><span>$278,000 USD</span></div></div></div><div class="content-conclusion"><p><strong>Our Commitment to Diversity:</strong></p> <p>Pinterest is an equal opportunity employer and makes employment decisions on the basis of merit. We want to have the best qualified people in every job. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, protected veteran status, or any other characteristic under federal, state, or local law. We also consider qualified applicants regardless of criminal histories, consistent with legal requirements. If you require an accommodation during the job application process, please notify&nbsp;<a href="mailto:accessibility@pinterest.com">accessibility@pinterest.com</a>&nbsp;for support.</p></div>
Senior Staff Machine Learning Enginee...
San Francisco, CA, US; , CA, US
<div class="content-intro"><p><strong>About Pinterest</strong><span style="font-weight: 400;">:&nbsp;&nbsp;</span></p> <p>Millions of people across the world come to Pinterest to find new ideas every day. It’s where they get inspiration, dream about new possibilities and plan for what matters most. Our mission is to help those people find their inspiration and create a life they love.&nbsp;In your role, you’ll be challenged to take on work that upholds this mission and pushes Pinterest forward. You’ll grow as a person and leader in your field, all the while helping&nbsp;Pinners&nbsp;make their lives better in the positive corner of the internet.</p> <p>Creating a life you love also means finding a career that celebrates the unique perspectives and experiences that you bring. As you read through the expectations of the position, consider how your skills and experiences may complement the responsibilities of the role. We encourage you to think through your relevant and transferable skills from prior experiences.</p> <p><em>Our new progressive work model is called PinFlex, a term that’s uniquely Pinterest to describe our flexible approach to living and working. Visit our </em><a href="https://www.pinterestcareers.com/pinflex/" target="_blank"><em><u>PinFlex</u></em></a><em> landing page to learn more.&nbsp;</em></p></div><p>We are looking for a highly motivated and experienced Machine Learning Engineer to join our team and help us shape the future of machine learning at Pinterest. In this role, you will tackle new challenges in machine learning that will have a real impact on the way people discover and interact with the world around them.&nbsp; You will collaborate with a world-class team of research scientists and engineers to develop new machine learning algorithms, systems, and applications that will bring step-function impact to the business metrics (recent publications <a href="https://arxiv.org/abs/2205.04507">1</a>, <a href="https://dl.acm.org/doi/abs/10.1145/3523227.3547394">2</a>, <a href="https://arxiv.org/abs/2306.00248">3</a>).&nbsp; You will also have the opportunity to work on a variety of exciting projects in the following areas:&nbsp;</p> <ul> <li>representation learning</li> <li>recommender systems</li> <li>graph neural network</li> <li>natural language processing (NLP)</li> <li>inclusive AI</li> <li>reinforcement learning</li> <li>user modeling</li> </ul> <p>You will also have the opportunity to mentor junior researchers and collaborate with external researchers on cutting-edge projects.&nbsp;&nbsp;</p> <p><strong>What you'll do:&nbsp;</strong></p> <ul> <li>Lead cutting-edge research in machine learning and collaborate with other engineering teams to adopt the innovations into Pinterest problems</li> <li>Collect, analyze, and synthesize findings from data and build intelligent data-driven model</li> <li>Scope and independently solve moderately complex problems; write clean, efficient, and sustainable code</li> <li>Use machine learning, natural language processing, and graph analysis to solve modeling and ranking problems across growth, discovery, ads and search</li> </ul> <p><strong>What we're looking for:</strong></p> <ul> <li>Mastery of at least one systems languages (Java, C++, Python) or one ML framework (Pytorch, Tensorflow, MLFlow)</li> <li>Experience in research and in solving analytical problems</li> <li>Strong communicator and team player. Being able to find solutions for open-ended problems</li> <li>8+ years working experience in the r&amp;d or engineering teams that build large-scale ML-driven projects</li> <li>3+ years experience leading cross-team engineering efforts that improves user experience in products</li> <li>MS/PhD in Computer Science, ML, NLP, Statistics, Information Sciences or related field</li> </ul> <p><strong>Desired skills:</strong></p> <ul> <li>Strong publication track record and industry experience in shipping machine learning solutions for large-scale challenges&nbsp;</li> <li>Cross-functional collaborator and strong communicator</li> <li>Comfortable solving ambiguous problems and adapting to a dynamic environment</li> </ul> <p>This position is not eligible for relocation assistance.</p> <p>#LI-SA1</p> <p>#LI-REMOTE</p><div class="content-pay-transparency"><div class="pay-input"><div class="description"><p>At Pinterest we believe the workplace should be equitable, inclusive, and inspiring for every employee. In an effort to provide greater transparency, we are sharing the base salary range for this position. The position is also eligible for equity. Final salary is based on a number of factors including location, travel, relevant prior experience, or particular skills and expertise.</p> <p><em><span style="font-weight: 400;">Information regarding the culture at Pinterest and benefits available for this position can be found <a href="https://www.pinterestcareers.com/pinterest-life/" target="_blank">here</a>.</span></em></p></div><div class="title">US based applicants only</div><div class="pay-range"><span>$158,950</span><span class="divider">&mdash;</span><span>$327,000 USD</span></div></div></div><div class="content-conclusion"><p><strong>Our Commitment to Diversity:</strong></p> <p>Pinterest is an equal opportunity employer and makes employment decisions on the basis of merit. We want to have the best qualified people in every job. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, protected veteran status, or any other characteristic under federal, state, or local law. We also consider qualified applicants regardless of criminal histories, consistent with legal requirements. If you require an accommodation during the job application process, please notify&nbsp;<a href="mailto:accessibility@pinterest.com">accessibility@pinterest.com</a>&nbsp;for support.</p></div>
Staff Software Engineer, ML Training
San Francisco, CA, US; , CA, US
<div class="content-intro"><p><strong>About Pinterest</strong><span style="font-weight: 400;">:&nbsp;&nbsp;</span></p> <p>Millions of people across the world come to Pinterest to find new ideas every day. It’s where they get inspiration, dream about new possibilities and plan for what matters most. Our mission is to help those people find their inspiration and create a life they love.&nbsp;In your role, you’ll be challenged to take on work that upholds this mission and pushes Pinterest forward. You’ll grow as a person and leader in your field, all the while helping&nbsp;Pinners&nbsp;make their lives better in the positive corner of the internet.</p> <p>Creating a life you love also means finding a career that celebrates the unique perspectives and experiences that you bring. As you read through the expectations of the position, consider how your skills and experiences may complement the responsibilities of the role. We encourage you to think through your relevant and transferable skills from prior experiences.</p> <p><em>Our new progressive work model is called PinFlex, a term that’s uniquely Pinterest to describe our flexible approach to living and working. Visit our </em><a href="https://www.pinterestcareers.com/pinflex/" target="_blank"><em><u>PinFlex</u></em></a><em> landing page to learn more.&nbsp;</em></p></div><p>The ML Platform team provides foundational tools and infrastructure used by hundreds of ML engineers across Pinterest, including recommendations, ads, visual search, growth/notifications, trust and safety. We aim to ensure that ML systems are healthy (production-grade quality) and fast (for modelers to iterate upon).</p> <p>We are seeking a highly skilled and experienced Staff Software Engineer to join our ML Training Infrastructure team and lead the technical strategy. The ML Training Infrastructure team builds platforms and tools for large-scale training and inference, model lifecycle management, and deployment of models across Pinterest. ML workloads are increasingly large, complex, interdependent and the efficient use of ML accelerators is critical to our success. We work on various efforts related to adoption, efficiency, performance, algorithms, UX and core infrastructure to enable the scheduling of ML workloads.</p> <p>You’ll be part of the ML Platform team in Data Engineering, which aims to ensure healthy and fast ML in all of the 40+ ML use cases across Pinterest.</p> <p><strong>What you’ll do:</strong></p> <ul> <li>Implement cost effective and scalable solutions to allow ML engineers to scale their ML training and inference workloads on compute platforms like Kubernetes.</li> <li>Lead and contribute to key projects; rolling out GPU sharing via MIGs and MPS , intelligent resource management, capacity planning, fault tolerant training.</li> <li>Lead the technical strategy and set the multi-year roadmap for ML Training Infrastructure that includes ML Compute and ML Developer frameworks like PyTorch, Ray and Jupyter.</li> <li>Collaborate with internal clients, ML engineers, and data scientists to address their concerns regarding ML development velocity and enable the successful implementation of customer use cases.</li> <li>Forge strong partnerships with tech leaders in the Data and Infra organizations to develop a comprehensive technical roadmap that spans across multiple teams.</li> <li>Mentor engineers within the team and demonstrate technical leadership.</li> </ul> <p><strong>What we’re looking for:</strong></p> <ul> <li>7+ years of experience in software engineering and machine learning, with a focus on building and maintaining ML infrastructure or Batch Compute infrastructure like YARN/Kubernetes/Mesos.</li> <li>Technical leadership experience, devising multi-quarter technical strategies and driving them to success.</li> <li>Strong understanding of High Performance Computing and/or and parallel computing.</li> <li>Ability to drive cross-team projects; Ability to understand our internal customers (ML practitioners and Data Scientists), their common usage patterns and pain points.</li> <li>Strong experience in Python and/or experience with other programming languages such as C++ and Java.</li> <li>Experience with GPU programming, containerization, orchestration technologies is a plus.</li> <li>Bonus point for experience working with cloud data processing technologies (Apache Spark, Ray, Dask, Flink, etc.) and ML frameworks such as PyTorch.</li> </ul> <p>This position is not eligible for relocation assistance.</p> <p>#LI-REMOTE</p> <p><span data-sheets-value="{&quot;1&quot;:2,&quot;2&quot;:&quot;#LI-AH2&quot;}" data-sheets-userformat="{&quot;2&quot;:14464,&quot;10&quot;:2,&quot;14&quot;:{&quot;1&quot;:2,&quot;2&quot;:0},&quot;15&quot;:&quot;Helvetica Neue&quot;,&quot;16&quot;:12}">#LI-AH2</span></p><div class="content-pay-transparency"><div class="pay-input"><div class="description"><p>At Pinterest we believe the workplace should be equitable, inclusive, and inspiring for every employee. In an effort to provide greater transparency, we are sharing the base salary range for this position. The position is also eligible for equity. Final salary is based on a number of factors including location, travel, relevant prior experience, or particular skills and expertise.</p> <p><em><span style="font-weight: 400;">Information regarding the culture at Pinterest and benefits available for this position can be found <a href="https://www.pinterestcareers.com/pinterest-life/" target="_blank">here</a>.</span></em></p></div><div class="title">US based applicants only</div><div class="pay-range"><span>$135,150</span><span class="divider">&mdash;</span><span>$278,000 USD</span></div></div></div><div class="content-conclusion"><p><strong>Our Commitment to Diversity:</strong></p> <p>Pinterest is an equal opportunity employer and makes employment decisions on the basis of merit. We want to have the best qualified people in every job. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, protected veteran status, or any other characteristic under federal, state, or local law. We also consider qualified applicants regardless of criminal histories, consistent with legal requirements. If you require an accommodation during the job application process, please notify&nbsp;<a href="mailto:accessibility@pinterest.com">accessibility@pinterest.com</a>&nbsp;for support.</p></div>
Distinguished Engineer, Frontend
San Francisco, CA, US; , US
<div class="content-intro"><p><strong>About Pinterest</strong><span style="font-weight: 400;">:&nbsp;&nbsp;</span></p> <p>Millions of people across the world come to Pinterest to find new ideas every day. It’s where they get inspiration, dream about new possibilities and plan for what matters most. Our mission is to help those people find their inspiration and create a life they love.&nbsp;In your role, you’ll be challenged to take on work that upholds this mission and pushes Pinterest forward. You’ll grow as a person and leader in your field, all the while helping&nbsp;Pinners&nbsp;make their lives better in the positive corner of the internet.</p> <p>Creating a life you love also means finding a career that celebrates the unique perspectives and experiences that you bring. As you read through the expectations of the position, consider how your skills and experiences may complement the responsibilities of the role. We encourage you to think through your relevant and transferable skills from prior experiences.</p> <p><em>Our new progressive work model is called PinFlex, a term that’s uniquely Pinterest to describe our flexible approach to living and working. Visit our </em><a href="https://www.pinterestcareers.com/pinflex/" target="_blank"><em><u>PinFlex</u></em></a><em> landing page to learn more.&nbsp;</em></p></div><p>As a Distinguished Engineer at Pinterest, you will play a pivotal role in shaping the technical direction of our platform, driving innovation, and providing leadership to our engineering teams. You'll be at the forefront of developing cutting-edge solutions that impact millions of users.</p> <p><strong>What you’ll do:</strong></p> <ul> <li>Advise executive leadership on highly complex, multi-faceted aspects of the business, with technological and cross-organizational impact.</li> <li>Serve as a technical mentor and role model for engineering teams, fostering a culture of excellence.</li> <li>Develop cutting-edge innovations with global impact on the business and anticipate future technological opportunities.</li> <li>Serve as strategist to translate ideas and innovations into outcomes, influencing and driving objectives across Pinterest.</li> <li>Embed systems and processes that develop and connect teams across Pinterest to harness the diversity of thought, experience, and backgrounds of Pinployees.</li> <li>Integrate velocity within Pinterest; mobilizing the organization by removing obstacles and enabling teams to focus on achieving results for the most important initiatives.</li> </ul> <p>&nbsp;<strong>What we’re looking for:</strong>:</p> <ul> <li>Proven experience as a distinguished engineer, fellow, or similar role in a technology company.</li> <li>Recognized as a pioneer and renowned technical authority within the industry, often globally, requiring comprehensive expertise in leading-edge theories and technologies.</li> <li>Deep technical expertise and thought leadership that helps accelerate adoption of the very best engineering practices, while maintaining knowledge on industry innovations, trends and practices.</li> <li>Ability to effectively communicate with and influence key stakeholders across the company, at all levels of the organization.</li> <li>Experience partnering with cross-functional project teams on initiatives with significant global impact.</li> <li>Outstanding problem-solving and analytical skills.</li> </ul> <p>&nbsp;</p> <p>This position is not eligible for relocation assistance.</p> <p>&nbsp;</p> <p>#LI-REMOTE</p> <p>#LI-NB1</p><div class="content-pay-transparency"><div class="pay-input"><div class="description"><p>At Pinterest we believe the workplace should be equitable, inclusive, and inspiring for every employee. In an effort to provide greater transparency, we are sharing the base salary range for this position. The position is also eligible for equity. Final salary is based on a number of factors including location, travel, relevant prior experience, or particular skills and expertise.</p> <p><em><span style="font-weight: 400;">Information regarding the culture at Pinterest and benefits available for this position can be found <a href="https://www.pinterestcareers.com/pinterest-life/" target="_blank">here</a>.</span></em></p></div><div class="title">US based applicants only</div><div class="pay-range"><span>$242,029</span><span class="divider">&mdash;</span><span>$498,321 USD</span></div></div></div><div class="content-conclusion"><p><strong>Our Commitment to Diversity:</strong></p> <p>Pinterest is an equal opportunity employer and makes employment decisions on the basis of merit. We want to have the best qualified people in every job. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, protected veteran status, or any other characteristic under federal, state, or local law. We also consider qualified applicants regardless of criminal histories, consistent with legal requirements. If you require an accommodation during the job application process, please notify&nbsp;<a href="mailto:accessibility@pinterest.com">accessibility@pinterest.com</a>&nbsp;for support.</p></div>
You may also like