What is Ripple and what are its top alternatives?
Ripple is a digital payment protocol that enables fast, low-cost cross-border transactions. It uses a distributed ledger technology to facilitate real-time settlements between financial institutions. Key features of Ripple include high scalability, security, and low transaction fees. However, it has faced criticism over centralization concerns due to the significant control Ripple Labs has over the protocol. 1. Stellar: Stellar is a platform that connects banks, payment systems, and people to move money quickly, reliably, and at almost no cost. It focuses on financial inclusion and offers fast transactions and low fees. Compared to Ripple, Stellar is more decentralized and open source. 2. EOS: EOS is a blockchain platform designed for the development of decentralized applications. It offers high scalability and flexibility, allowing for fast and efficient transactions. However, it has faced criticism for its centralized governance model. 3. R3 Corda: Corda is a blockchain platform specifically designed for businesses, enabling secure and private transactions. It emphasizes privacy and interoperability between different industries. Compared to Ripple, Corda offers more customization options for enterprises. 4. Nano: Nano is a cryptocurrency designed for fast and fee-less transactions. It uses a block-lattice structure to achieve scalability and instant transfers. Compared to Ripple, Nano focuses more on peer-to-peer transactions rather than institutional transfers. 5. Tezos: Tezos is a blockchain platform that features on-chain governance and formal verification of smart contracts. It aims to provide a self-amending blockchain that can evolve over time without requiring hard forks. Compared to Ripple, Tezos offers a more democratic governance model. 6. Algorand: Algorand is a blockchain platform that prioritizes security, scalability, and decentralization. It uses a pure proof-of-stake consensus mechanism to achieve high transaction throughput. Compared to Ripple, Algorand focuses on building a permissionless and inclusive ecosystem. 7. IOTA: IOTA is a distributed ledger technology that enables fee-less microtransactions for the Internet of Things. It uses a unique Tangle structure instead of a traditional blockchain. Compared to Ripple, IOTA targets machine-to-machine transactions rather than interbank payments. 8. Cardano: Cardano is a blockchain platform that aims to provide a secure and scalable infrastructure for the development of decentralized applications and smart contracts. It focuses on academic research and formal verification. Compared to Ripple, Cardano is more research-driven and community-oriented. 9. VeChain: VeChain is a blockchain platform that focuses on supply chain management and product verification. It uses IoT technology to track items throughout the supply chain. Compared to Ripple, VeChain targets a specific use case in the enterprise sector. 10. Chainlink: Chainlink is a decentralized oracle network that enables smart contracts to securely connect with external data sources. It aims to bridge the gap between blockchain applications and real-world data. Compared to Ripple, Chainlink focuses on enhancing the capabilities of smart contracts with external information.
Top Alternatives to Ripple
- Stellar
Stellar allows you to quickly restore database when you are e.g. writing database migrations, switching branches or messing with SQL. PostgreSQL and MySQL are supported. ...
- Ethereum
A decentralized platform for applications that run exactly as programmed without any chance of fraud, censorship or third-party interference. ...
- Swift
Writing code is interactive and fun, the syntax is concise yet expressive, and apps run lightning-fast. Swift is ready for your next iOS and OS X project — or for addition into your current app — because Swift code works side-by-side with Objective-C. ...
- Litecoin
It is a peer-to-peer Internet currency that enables instant, near-zero cost payments to anyone in the world. It is an open source, global payment network that is fully decentralized without any central authorities. ...
- MySQL
The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...
- PostgreSQL
PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...
- MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...
- Redis
Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...
Ripple alternatives & related posts
related Stellar posts
- Decentralized blockchain, most famous platform for DApp7
- Resistant to hash power attacks2
- Rich smart contract execution environment2
- #2 on capitalization after Bitcoin2
- High fees and lacks scalability1
related Ethereum posts
Which is the best to use for integrating blockchain techniques into a secure cloud system: Parity, Ethereum, or hyperedge fabric?
Hey! I am building an uber clone using blockchain. I am confused about where do I store the data of the drivers and riders and transaction information. IPFS or Ethereum? or do I store the IPFS URL on Ethereum? What would be the advantages of one over the other?
Swift
- Ios259
- Elegant180
- Not Objective-C126
- Backed by apple107
- Type inference93
- Generics61
- Playgrounds54
- Semicolon free49
- OSX38
- Tuples offer compound variables36
- Clean Syntax24
- Easy to learn24
- Open Source22
- Beautiful Code21
- Functional20
- Dynamic12
- Linux12
- Protocol-oriented programming11
- Promotes safe, readable code10
- No S-l-o-w JVM9
- Explicit optionals8
- Storyboard designer7
- Optionals6
- Type safety6
- Super addicting language, great people, open, elegant5
- Best UI concept5
- Its friendly4
- Highly Readable codes4
- Fail-safe4
- Powerful4
- Faster and looks better4
- Swift is faster than Objective-C4
- Feels like a better C++4
- Easy to learn and work3
- Much more fun3
- Protocol extensions3
- Native3
- Its fun and damn fast3
- Strong Type safety3
- Easy to Maintain3
- Protocol as type2
- All Cons C# and Java Swift Already has2
- Esay2
- MacOS2
- Type Safe2
- Protocol oriented programming2
- Can interface with C easily1
- Actually don't have to own a mac1
- Free from Memory Leak1
- Swift is easier to understand for non-iOS developers.1
- Numbers with underbar1
- Optional chain1
- Great for Multi-Threaded Programming1
- Runs Python 8 times faster1
- Objec1
- Must own a mac6
- Memory leaks are not uncommon2
- Very irritatingly picky about things that’s1
- Complicated process for exporting modules1
- Its classes compile to roughly 300 lines of assembly1
- Is a lot more effort than lua to make simple functions1
- Overly complex options makes it easy to create bad code0
related Swift posts
Hi Community! Trust everyone is keeping safe. I am exploring the idea of building a #Neobank (App) with end-to-end banking capabilities. In the process of exploring this space, I have come across multiple Apps (N26, Revolut, Monese, etc) and explored their stacks in detail. The confusion remains to be the Backend Tech to be used?
What would you go with considering all of the languages such as Node.js Java Rails Python are suggested by some person or the other. As a general trend, I have noticed the usage of Node with React on the front or Node with a combination of Kotlin and Swift. Please suggest what would be the right approach!
Excerpts from how we developed (and subsequently open sourced) Uber's cross-platform mobile architecture framework, RIBs , going from Objective-C to Swift in the process for iOS: https://github.com/uber/RIBs
Uber’s new application architecture (RIBs) extensively uses protocols to keep its various components decoupled and testable. We used this architecture for the first time in our new rider application and moved our primary language from Objective-C to Swift. Since Swift is a very static language, unit testing became problematic. Dynamic languages have good frameworks to build test mocks, stubs, or stand-ins by dynamically creating or modifying existing concrete classes.
Needless to say, we were not very excited about the additional complexity of manually writing and maintaining mock implementations for each of our thousands of protocols.
The information required to generate mock classes already exists in the Swift protocol. For Uber’s use case, we set out to create tooling that would let engineers automatically generate test mocks for any protocol they wanted by simply annotating them.
The iOS codebase for our rider application alone incorporates around 1,500 of these generated mocks. Without our code generation tool, all of these would have to be written and maintained by hand, which would have made testing much more time-intensive. Auto-generated mocks have contributed a lot to the unit test coverage that we have today.
We built these code generation tools ourselves for a number of reasons, including that there weren’t many open source tools available at the time we started our effort. Today, there are some great open source tools to generate resource accessors, like SwiftGen. And Sourcery can help you with generic code generation needs:
https://eng.uber.com/code-generation/ https://eng.uber.com/driver-app-ribs-architecture/
(GitHub : https://github.com/uber/RIBs )
related Litecoin posts
- Sql800
- Free679
- Easy562
- Widely used528
- Open source490
- High availability180
- Cross-platform support160
- Great community104
- Secure79
- Full-text indexing and searching75
- Fast, open, available26
- Reliable16
- SSL support16
- Robust15
- Enterprise Version9
- Easy to set up on all platforms7
- NoSQL access to JSON data type3
- Relational database1
- Easy, light, scalable1
- Sequel Pro (best SQL GUI)1
- Replica Support1
- Owned by a company with their own agenda16
- Can't roll back schema changes3
related MySQL posts
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.
We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).
And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.
I can't recommend it highly enough.
- Relational database763
- High availability510
- Enterprise class database439
- Sql383
- Sql + nosql304
- Great community173
- Easy to setup147
- Heroku131
- Secure by default130
- Postgis113
- Supports Key-Value50
- Great JSON support48
- Cross platform34
- Extensible33
- Replication28
- Triggers26
- Multiversion concurrency control23
- Rollback23
- Open source21
- Heroku Add-on18
- Stable, Simple and Good Performance17
- Powerful15
- Lets be serious, what other SQL DB would you go for?13
- Good documentation11
- Scalable9
- Free8
- Reliable8
- Intelligent optimizer8
- Transactional DDL7
- Modern7
- One stop solution for all things sql no matter the os6
- Relational database with MVCC5
- Faster Development5
- Full-Text Search4
- Developer friendly4
- Excellent source code3
- Free version3
- Great DB for Transactional system or Application3
- Relational datanbase3
- search3
- Open-source3
- Text2
- Full-text2
- Can handle up to petabytes worth of size1
- Composability1
- Multiple procedural languages supported1
- Native0
- Table/index bloatings10
related PostgreSQL posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.
We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient
Based on the above criteria, we selected the following tools to perform the end to end data replication:
We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.
We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.
In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.
Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.
In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!
- Document-oriented storage828
- No sql593
- Ease of use553
- Fast464
- High performance410
- Free255
- Open source218
- Flexible180
- Replication & high availability145
- Easy to maintain112
- Querying42
- Easy scalability39
- Auto-sharding38
- High availability37
- Map/reduce31
- Document database27
- Easy setup25
- Full index support25
- Reliable16
- Fast in-place updates15
- Agile programming, flexible, fast14
- No database migrations12
- Easy integration with Node.Js8
- Enterprise8
- Enterprise Support6
- Great NoSQL DB5
- Support for many languages through different drivers4
- Schemaless3
- Aggregation Framework3
- Drivers support is good3
- Fast2
- Managed service2
- Easy to Scale2
- Awesome2
- Consistent2
- Good GUI1
- Acid Compliant1
- Very slowly for connected models that require joins6
- Not acid compliant3
- Proprietary query language2
related MongoDB posts
Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.
We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient
Based on the above criteria, we selected the following tools to perform the end to end data replication:
We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.
We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.
In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.
Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.
In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!
We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.
As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).
When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.
- Performance886
- Super fast542
- Ease of use513
- In-memory cache444
- Advanced key-value cache324
- Open source194
- Easy to deploy182
- Stable164
- Free155
- Fast121
- High-Performance42
- High Availability40
- Data Structures35
- Very Scalable32
- Replication24
- Great community22
- Pub/Sub22
- "NoSQL" key-value data store19
- Hashes16
- Sets13
- Sorted Sets11
- NoSQL10
- Lists10
- Async replication9
- BSD licensed9
- Bitmaps8
- Integrates super easy with Sidekiq for Rails background8
- Keys with a limited time-to-live7
- Open Source7
- Lua scripting6
- Strings6
- Awesomeness for Free5
- Hyperloglogs5
- Transactions4
- Outstanding performance4
- Runs server side LUA4
- LRU eviction of keys4
- Feature Rich4
- Written in ANSI C4
- Networked4
- Data structure server3
- Performance & ease of use3
- Dont save data if no subscribers are found2
- Automatic failover2
- Easy to use2
- Temporarily kept on disk2
- Scalable2
- Existing Laravel Integration2
- Channels concept2
- Object [key/value] size each 500 MB2
- Simple2
- Cannot query objects directly15
- No secondary indexes for non-numeric data types3
- No WAL1
related Redis posts
StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.
Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!
#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.