StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. RocksDB vs TimescaleDB

RocksDB vs TimescaleDB

OverviewDecisionsComparisonAlternatives

Overview

RocksDB
RocksDB
Stacks141
Followers290
Votes11
GitHub Stars30.9K
Forks6.6K
TimescaleDB
TimescaleDB
Stacks226
Followers374
Votes44
GitHub Stars20.6K
Forks988

RocksDB vs TimescaleDB: What are the differences?

Developers describe RocksDB as "Embeddable persistent key-value store for fast storage, developed and maintained by Facebook Database Engineering Team". RocksDB is an embeddable persistent key-value store for fast storage. RocksDB can also be the foundation for a client-server database but our current focus is on embedded workloads. RocksDB builds on LevelDB to be scalable to run on servers with many CPU cores, to efficiently use fast storage, to support IO-bound, in-memory and write-once workloads, and to be flexible to allow for innovation. On the other hand, TimescaleDB is detailed as "Scalable time-series database optimized for fast ingest and complex queries. Purpose-built as a PostgreSQL extension". TimescaleDB is the only open-source time-series database that natively supports full-SQL at scale, combining the power, reliability, and ease-of-use of a relational database with the scalability typically seen in NoSQL databases.

RocksDB and TimescaleDB belong to "Databases" category of the tech stack.

Some of the features offered by RocksDB are:

  • Designed for application servers wanting to store up to a few terabytes of data on locally attached Flash drives or in RAM
  • Optimized for storing small to medium size key-values on fast storage -- flash devices or in-memory
  • Scales linearly with number of CPUs so that it works well on ARM processors

On the other hand, TimescaleDB provides the following key features:

  • Packaged as a PostgreSQL extension
  • Full ANSI SQL
  • JOINs (e.g., across PostgreSQL tables)

RocksDB and TimescaleDB are both open source tools. It seems that RocksDB with 14.3K GitHub stars and 3.12K forks on GitHub has more adoption than TimescaleDB with 7.28K GitHub stars and 385 GitHub forks.

WakaTime, ScreenAware, and AgFlow are some of the popular companies that use TimescaleDB, whereas RocksDB is used by Facebook, LinkedIn, and Skry, Inc.. TimescaleDB has a broader approval, being mentioned in 15 company stacks & 3 developers stacks; compared to RocksDB, which is listed in 6 company stacks and 7 developer stacks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on RocksDB, TimescaleDB

Anonymous
Anonymous

Apr 21, 2020

Needs advice

We are building an IOT service with heavy write throughput and fewer reads (we need downsampling records). We prefer to have good reliability when comes to data and prefer to have data retention based on policies.

So, we are looking for what is the best underlying DB for ingesting a lot of data and do queries easily

381k views381k
Comments
Umair
Umair

Technical Architect at ERP Studio

Feb 12, 2021

Needs adviceonPostgreSQLPostgreSQLTimescaleDBTimescaleDBDruidDruid

Developing a solution that collects Telemetry Data from different devices, nearly 1000 devices minimum and maximum 12000. Each device is sending 2 packets in 1 second. This is time-series data, and this data definition and different reports are saved on PostgreSQL. Like Building information, maintenance records, etc. I want to know about the best solution. This data is required for Math and ML to run different algorithms. Also, data is raw without definitions and information stored in PostgreSQL. Initially, I went with TimescaleDB due to PostgreSQL support, but to increase in sites, I started facing many issues with timescale DB in terms of flexibility of storing data.

My major requirement is also the replication of the database for reporting and different purposes. You may also suggest other options other than Druid and Cassandra. But an open source solution is appreciated.

462k views462k
Comments
Benoit
Benoit

Principal Engineer at Sqreen

Sep 21, 2019

Decided

I chose TimescaleDB because to be the backend system of our production monitoring system. We needed to be able to keep track of multiple high cardinality dimensions.

The drawbacks of this decision are our monitoring system is a bit more ad hoc than it used to (New Relic Insights)

We are combining this with Grafana for display and Telegraf for data collection

155k views155k
Comments

Detailed Comparison

RocksDB
RocksDB
TimescaleDB
TimescaleDB

RocksDB is an embeddable persistent key-value store for fast storage. RocksDB can also be the foundation for a client-server database but our current focus is on embedded workloads. RocksDB builds on LevelDB to be scalable to run on servers with many CPU cores, to efficiently use fast storage, to support IO-bound, in-memory and write-once workloads, and to be flexible to allow for innovation.

TimescaleDB: An open-source database built for analyzing time-series data with the power and convenience of SQL — on premise, at the edge, or in the cloud.

Designed for application servers wanting to store up to a few terabytes of data on locally attached Flash drives or in RAM;Optimized for storing small to medium size key-values on fast storage -- flash devices or in-memory;Scales linearly with number of CPUs so that it works well on ARM processors
Packaged as a PostgreSQL extension;Full ANSI SQL;JOINs (e.g., across PostgreSQL tables);Complex queries;Secondary indexes;Composite indexes;Support for very high cardinality data;Triggers;Constraints;UPSERTS;JSON/JSONB;Ability to ingest out of order data;Ability to perform accurate rollups;Data retention policies;Fast deletes;Integration with PostGIS and the rest of the PostgreSQL ecosystem;
Statistics
GitHub Stars
30.9K
GitHub Stars
20.6K
GitHub Forks
6.6K
GitHub Forks
988
Stacks
141
Stacks
226
Followers
290
Followers
374
Votes
11
Votes
44
Pros & Cons
Pros
  • 5
    Very fast
  • 3
    Made by Facebook
  • 2
    Consistent performance
  • 1
    Ability to add logic to the database layer where needed
Pros
  • 9
    Open source
  • 8
    Easy Query Language
  • 7
    Time-series data analysis
  • 5
    Established postgresql API and support
  • 4
    Reliable
Cons
  • 5
    Licensing issues when running on managed databases
Integrations
No integrations available
Prometheus
Prometheus
Equinix Metal
Equinix Metal
Ruby
Ruby
PostgreSQL
PostgreSQL
Django
Django
Kubernetes
Kubernetes
pgAdmin
pgAdmin
Python
Python
Kafka
Kafka
Datadog
Datadog

What are some alternatives to RocksDB, TimescaleDB?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase