StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Infrastructure as a Service
  4. Cloud Storage
  5. Airflow vs Amazon S3 vs RabbitMQ

Airflow vs Amazon S3 vs RabbitMQ

OverviewDecisionsComparisonAlternatives

Overview

Amazon S3
Amazon S3
Stacks55.1K
Followers40.2K
Votes2.0K
RabbitMQ
RabbitMQ
Stacks21.8K
Followers18.9K
Votes558
GitHub Stars13.2K
Forks4.0K
Airflow
Airflow
Stacks1.7K
Followers2.8K
Votes128

Airflow vs Amazon S3 vs RabbitMQ: What are the differences?

Introduction

In this article, we will explore the key differences between Airflow, Amazon S3, and RabbitMQ. Markdown code will be used to format the content for a website.

  1. Scalability: Airflow is a platform for workflow automation, while Amazon S3 is a cloud storage service and RabbitMQ is a message broker. Airflow allows for scalable task execution and can handle large workflows with ease. Amazon S3 offers virtually unlimited storage capacity, making it highly scalable. RabbitMQ provides high scalability for message queues, allowing for easy distribution of tasks.

  2. Purpose: Airflow is designed for managing and scheduling complex workflows, providing task dependencies, retries, and monitoring. Amazon S3 focuses on storing and retrieving data in the cloud, providing durability, availability, and scalability for object storage. RabbitMQ is specialized for message queuing, facilitating communication between distributed systems.

  3. Data Processing: Airflow is designed to orchestrate data processing tasks, allowing the execution of tasks in a specific order and managing the flow of data between them. Amazon S3 provides storage for data, but does not have built-in data processing capabilities. RabbitMQ facilitates the exchange of messages between systems, but does not directly process data.

  4. Flexibility: Airflow offers a flexible platform with a large ecosystem of plugins and integrations, allowing customization and extending its functionalities. Amazon S3 provides a simple object storage service with a wide range of compatible applications and services. RabbitMQ also offers flexibility and can integrate with various programming languages and frameworks.

  5. Workflow Visualization: Airflow provides a web-based UI for visualizing and monitoring workflows, allowing users to easily track the progress and status of tasks. Amazon S3 does not have a built-in workflow visualization feature, as it primarily focuses on storing data. RabbitMQ provides a management UI that offers some level of visualization for message queues.

  6. Pricing Model: Airflow is an open-source project and can be used free of charge, although additional costs may arise from hosting infrastructure. Amazon S3 charges based on data storage and data transfer rates. RabbitMQ is an open-source project and can be used without licensing fees, but expenses might occur for hosting and infrastructure.

In summary, Airflow is a workflow automation platform that handles task dependencies and scheduling, while Amazon S3 is a cloud storage service primarily used for object storage, and RabbitMQ is a message broker that enables communication between distributed systems. Each platform has its own focus and serves different purposes, offering scalability, flexibility, and integration possibilities.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon S3, RabbitMQ, Airflow

viradiya
viradiya

Apr 12, 2020

Needs adviceonAngularJSAngularJSASP.NET CoreASP.NET CoreMSSQLMSSQL

We are going to develop a microservices-based application. It consists of AngularJS, ASP.NET Core, and MSSQL.

We have 3 types of microservices. Emailservice, Filemanagementservice, Filevalidationservice

I am a beginner in microservices. But I have read about RabbitMQ, but come to know that there are Redis and Kafka also in the market. So, I want to know which is best.

933k views933k
Comments
Meili
Meili

Software engineer at Digital Science

Sep 24, 2020

Needs adviceonZeroMQZeroMQRabbitMQRabbitMQAmazon SQSAmazon SQS

Hi, we are in a ZMQ set up in a push/pull pattern, and we currently start to have more traffic and cases that the service is unavailable or stuck. We want to:

  • Not loose messages in services outages
  • Safely restart service without losing messages (@{ZeroMQ}|tool:1064| seems to need to close the socket in the receiver before restart manually)

Do you have experience with this setup with ZeroMQ? Would you suggest RabbitMQ or Amazon SQS (we are in AWS setup) instead? Something else?

Thank you for your time

500k views500k
Comments
André
André

Technology Manager at GS1 Portugal - Codipor

Jul 30, 2020

Needs adviceon.NET Core.NET Core

Hello dear developers, our company is starting a new project for a new Web App, and we are currently designing the Architecture (we will be using .NET Core). We want to embark on something new, so we are thinking about migrating from a monolithic perspective to a microservices perspective. We wish to containerize those microservices and make them independent from each other. Is it the best way for microservices to communicate with each other via ESB, or is there a new way of doing this? Maybe complementing with an API Gateway? Can you recommend something else different than the two tools I provided?

We want something good for Cost/Benefit; performance should be high too (but not the primary constraint).

Thank you very much in advance :)

461k views461k
Comments

Detailed Comparison

Amazon S3
Amazon S3
RabbitMQ
RabbitMQ
Airflow
Airflow

Amazon Simple Storage Service provides a fully redundant data storage infrastructure for storing and retrieving any amount of data, at any time, from anywhere on the web

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.

Write, read, and delete objects containing from 1 byte to 5 terabytes of data each. The number of objects you can store is unlimited.;Each object is stored in a bucket and retrieved via a unique, developer-assigned key.;A bucket can be stored in one of several Regions. You can choose a Region to optimize for latency, minimize costs, or address regulatory requirements. Amazon S3 is currently available in the US Standard, US West (Oregon), US West (Northern California), EU (Ireland), Asia Pacific (Singapore), Asia Pacific (Tokyo), Asia Pacific (Sydney), South America (Sao Paulo), and GovCloud (US) Regions. The US Standard Region automatically routes requests to facilities in Northern Virginia or the Pacific Northwest using network maps.;Objects stored in a Region never leave the Region unless you transfer them out. For example, objects stored in the EU (Ireland) Region never leave the EU.;Authentication mechanisms are provided to ensure that data is kept secure from unauthorized access. Objects can be made private or public, and rights can be granted to specific users.;Options for secure data upload/download and encryption of data at rest are provided for additional data protection.;Uses standards-based REST and SOAP interfaces designed to work with any Internet-development toolkit.;Built to be flexible so that protocol or functional layers can easily be added. The default download protocol is HTTP. A BitTorrent protocol interface is provided to lower costs for high-scale distribution.;Provides functionality to simplify manageability of data through its lifetime. Includes options for segregating data by buckets, monitoring and controlling spend, and automatically archiving data to even lower cost storage options. These options can be easily administered from the Amazon S3 Management Console.;Reliability backed with the Amazon S3 Service Level Agreement.
Robust messaging for applications;Easy to use;Runs on all major operating systems;Supports a huge number of developer platforms;Open source and commercially supported
Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writting code that instantiate pipelines dynamically.;Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.;Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built in the core of Airflow using powerful Jinja templating engine.;Scalable: Airflow has a modular architecture and uses a message queue to talk to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity.
Statistics
GitHub Stars
-
GitHub Stars
13.2K
GitHub Stars
-
GitHub Forks
-
GitHub Forks
4.0K
GitHub Forks
-
Stacks
55.1K
Stacks
21.8K
Stacks
1.7K
Followers
40.2K
Followers
18.9K
Followers
2.8K
Votes
2.0K
Votes
558
Votes
128
Pros & Cons
Pros
  • 590
    Reliable
  • 492
    Scalable
  • 456
    Cheap
  • 329
    Simple & easy
  • 83
    Many sdks
Cons
  • 7
    Permissions take some time to get right
  • 6
    Requires a credit card
  • 6
    Takes time/work to organize buckets & folders properly
  • 3
    Complex to set up
Pros
  • 235
    It's fast and it works with good metrics/monitoring
  • 80
    Ease of configuration
  • 60
    I like the admin interface
  • 52
    Easy to set-up and start with
  • 22
    Durable
Cons
  • 9
    Too complicated cluster/HA config and management
  • 6
    Needs Erlang runtime. Need ops good with Erlang runtime
  • 5
    Configuration must be done first, not by your code
  • 4
    Slow
Pros
  • 53
    Features
  • 14
    Task Dependency Management
  • 12
    Cluster of workers
  • 12
    Beautiful UI
  • 10
    Extensibility
Cons
  • 2
    Running it on kubernetes cluster relatively complex
  • 2
    Observability is not great when the DAGs exceed 250
  • 2
    Open source - provides minimum or no support
  • 1
    Logical separation of DAGs is not straight forward

What are some alternatives to Amazon S3, RabbitMQ, Airflow?

Kafka

Kafka

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

Amazon SQS

Amazon SQS

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

NSQ

NSQ

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

Amazon EBS

Amazon EBS

Amazon EBS volumes are network-attached, and persist independently from the life of an instance. Amazon EBS provides highly available, highly reliable, predictable storage volumes that can be attached to a running Amazon EC2 instance and exposed as a device within the instance. Amazon EBS is particularly suited for applications that require a database, file system, or access to raw block level storage.

ActiveMQ

ActiveMQ

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

Google Cloud Storage

Google Cloud Storage

Google Cloud Storage allows world-wide storing and retrieval of any amount of data and at any time. It provides a simple programming interface which enables developers to take advantage of Google's own reliable and fast networking infrastructure to perform data operations in a secure and cost effective manner. If expansion needs arise, developers can benefit from the scalability provided by Google's infrastructure.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Azure Storage

Azure Storage

Azure Storage provides the flexibility to store and retrieve large amounts of unstructured data, such as documents and media files with Azure Blobs; structured nosql based data with Azure Tables; reliable messages with Azure Queues, and use SMB based Azure Files for migrating on-premises applications to the cloud.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase