Need advice about which tool to choose?Ask the StackShare community!

Airflow

1.7K
2.7K
+ 1
128
Camunda

185
216
+ 1
0
Add tool

Airflow vs Camunda: What are the differences?

Airflow and Camunda are both popular workflow management systems. Let's explore the key differences between them.

  1. Execution Model: One major difference between Airflow and Camunda lies in their execution models. Airflow follows a task-based execution model where tasks are defined and executed in a sequential manner. On the other hand, Camunda employs a process-based execution model where business processes are defined using BPMN (Business Process Model and Notation) and executed in a stateful manner. While Airflow is suitable for linear workflow execution, Camunda is designed for complex and dynamic process orchestration.

  2. Workflow Visualization: Airflow provides a built-in UI for visualizing and monitoring workflows. It offers a graphical representation of the workflow structure and the status of each task. Camunda also offers a similar feature but with more advanced capabilities. Camunda provides a comprehensive process modeler that allows users to design, simulate, and visualize workflows in BPMN. Additionally, Camunda provides real-time monitoring and reporting features to track the execution progress of workflows.

  3. Task Scheduling: Airflow has a built-in task scheduling mechanism that allows users to define dependencies between tasks and execute them based on certain conditions. Users can schedule tasks to run at specific times or intervals using cron-like expressions. Camunda, on the other hand, provides more advanced task scheduling capabilities. It supports time-based, event-based, and condition-based task triggers, providing more flexibility in defining task execution patterns.

  4. User Interaction and Forms: Camunda excels in providing user interaction and form capabilities within workflows. It allows users to define user tasks with forms and gather input from users during the workflow execution. This makes Camunda suitable for scenarios where human interaction is required, such as approval processes or user task assignments. Airflow, on the other hand, does not have built-in support for user interaction and forms, focusing primarily on automated task execution.

  5. Integration and Extensibility: Airflow provides a rich set of integrations and extensions, making it easy to connect with different systems and tools. It has a wide range of operators and hooks that enable integration with databases, cloud services, and various third-party tools. Camunda, being a comprehensive BPM platform, also offers extensive integration capabilities. It provides connectors and APIs to interact with other systems, databases, and services, making it suitable for enterprise workflow automation scenarios.

  6. Domain-Specific Features: Each of these workflow management systems has certain domain-specific features that make them stand out. Airflow, being focused on data pipeline orchestration, provides built-in support for data processing tasks and integration with popular data processing frameworks like Apache Spark and Apache Hadoop. Camunda, with its BPMN-based approach, offers advanced capabilities for complex process modeling, decision management, and case management.

In summary, Airflow is a task-based data pipeline orchestration tool with basic workflow visualization and scheduling capabilities. On the other hand, Camunda is a comprehensive BPMN-based workflow and decision automation platform with advanced workflow modeling, user interaction, and extensibility features.

Advice on Airflow and Camunda
Needs advice
on
AirflowAirflowLuigiLuigi
and
Apache SparkApache Spark

I am so confused. I need a tool that will allow me to go to about 10 different URLs to get a list of objects. Those object lists will be hundreds or thousands in length. I then need to get detailed data lists about each object. Those detailed data lists can have hundreds of elements that could be map/reduced somehow. My batch process dies sometimes halfway through which means hours of processing gone, i.e. time wasted. I need something like a directed graph that will keep results of successful data collection and allow me either pragmatically or manually to retry the failed ones some way (0 - forever) times. I want it to then process all the ones that have succeeded or been effectively ignored and load the data store with the aggregation of some couple thousand data-points. I know hitting this many endpoints is not a good practice but I can't put collectors on all the endpoints or anything like that. It is pretty much the only way to get the data.

See more
Replies (1)
Gilroy Gordon
Solution Architect at IGonics Limited · | 2 upvotes · 277.4K views
Recommends
on
CassandraCassandra

For a non-streaming approach:

You could consider using more checkpoints throughout your spark jobs. Furthermore, you could consider separating your workload into multiple jobs with an intermittent data store (suggesting cassandra or you may choose based on your choice and availability) to store results , perform aggregations and store results of those.

Spark Job 1 - Fetch Data From 10 URLs and store data and metadata in a data store (cassandra) Spark Job 2..n - Check data store for unprocessed items and continue the aggregation

Alternatively for a streaming approach: Treating your data as stream might be useful also. Spark Streaming allows you to utilize a checkpoint interval - https://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Airflow
Pros of Camunda
  • 53
    Features
  • 14
    Task Dependency Management
  • 12
    Beautiful UI
  • 12
    Cluster of workers
  • 10
    Extensibility
  • 6
    Open source
  • 5
    Complex workflows
  • 5
    Python
  • 3
    Good api
  • 3
    Apache project
  • 3
    Custom operators
  • 2
    Dashboard
    Be the first to leave a pro

    Sign up to add or upvote prosMake informed product decisions

    Cons of Airflow
    Cons of Camunda
    • 2
      Observability is not great when the DAGs exceed 250
    • 2
      Running it on kubernetes cluster relatively complex
    • 2
      Open source - provides minimum or no support
    • 1
      Logical separation of DAGs is not straight forward
      Be the first to leave a con

      Sign up to add or upvote consMake informed product decisions

      What is Airflow?

      Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.

      What is Camunda?

      With Camunda, business users collaborate with developers to model and automate end-to-end processes using BPMN-powered flowcharts that run with the speed, scale, and resiliency required to compete in today’s digital-first world

      Need advice about which tool to choose?Ask the StackShare community!

      Jobs that mention Airflow and Camunda as a desired skillset
      What companies use Airflow?
      What companies use Camunda?
      Manage your open source components, licenses, and vulnerabilities
      Learn More

      Sign up to get full access to all the companiesMake informed product decisions

      What tools integrate with Airflow?
      What tools integrate with Camunda?

      Sign up to get full access to all the tool integrationsMake informed product decisions

      Blog Posts

      What are some alternatives to Airflow and Camunda?
      Luigi
      It is a Python module that helps you build complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization etc. It also comes with Hadoop support built in.
      Apache NiFi
      An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.
      Jenkins
      In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project.
      AWS Step Functions
      AWS Step Functions makes it easy to coordinate the components of distributed applications and microservices using visual workflows. Building applications from individual components that each perform a discrete function lets you scale and change applications quickly.
      Pachyderm
      Pachyderm is an open source MapReduce engine that uses Docker containers for distributed computations.
      See all alternatives