StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Relational Databases
  4. Postgresql As A Service
  5. Amazon RDS for PostgreSQL vs Kafka

Amazon RDS for PostgreSQL vs Kafka

OverviewDecisionsComparisonAlternatives

Overview

Amazon RDS for PostgreSQL
Amazon RDS for PostgreSQL
Stacks814
Followers607
Votes40
Kafka
Kafka
Stacks24.2K
Followers22.3K
Votes607
GitHub Stars31.2K
Forks14.8K

Amazon RDS for PostgreSQL vs Kafka: What are the differences?

Introduction:

When comparing Amazon RDS for PostgreSQL and Kafka, there are key differences that can impact decision-making for organizations considering these technologies for their data management needs.

  1. Data Storage and Processing: Amazon RDS for PostgreSQL is a managed relational database service that focuses on storing and managing structured data using the SQL language, making it ideal for transactional applications. On the other hand, Kafka is a distributed streaming platform designed for processing and analyzing large volumes of unstructured data in real-time, making it more suitable for streaming and event-driven architectures.

  2. Data Model: Amazon RDS for PostgreSQL follows a traditional relational data model with tables, rows, and columns, allowing for complex relationships and structured data storage. In contrast, Kafka operates on a publish-subscribe model, where data is organized into topics and partitions for efficient distribution and consumption across multiple consumers.

  3. Data Consistency and Durability: Amazon RDS for PostgreSQL ensures ACID compliance for data consistency and durability, making it a reliable choice for applications that require strong data consistency guarantees. Kafka, on the other hand, focuses on high availability and fault tolerance, providing eventual consistency through replication and fault tolerance mechanisms.

  4. Query Language Support: Amazon RDS for PostgreSQL supports SQL queries for data retrieval and manipulation, making it easy for developers familiar with SQL to work with the database. In contrast, Kafka does not support traditional SQL queries but offers APIs for producers and consumers to publish and consume data in real-time.

  5. Use Cases: Amazon RDS for PostgreSQL is well-suited for transactional applications, reporting, and analytics that require structured data storage and complex querying capabilities. Kafka, on the other hand, is commonly used for real-time data processing, stream processing, log aggregation, and event-driven architectures that demand high throughput and low latency.

  6. Scaling and Performance: Amazon RDS for PostgreSQL allows for vertical and horizontal scaling to accommodate growing workloads, but performance may be limited by the underlying hardware. Kafka, on the other hand, offers horizontal scalability by adding more broker nodes to handle increased data processing demands efficiently.

In Summary, Amazon RDS for PostgreSQL is ideal for structured data storage and transactional applications, while Kafka is designed for real-time data processing and event-driven architectures with high throughput requirements.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon RDS for PostgreSQL, Kafka

viradiya
viradiya

Apr 12, 2020

Needs adviceonAngularJSAngularJSASP.NET CoreASP.NET CoreMSSQLMSSQL

We are going to develop a microservices-based application. It consists of AngularJS, ASP.NET Core, and MSSQL.

We have 3 types of microservices. Emailservice, Filemanagementservice, Filevalidationservice

I am a beginner in microservices. But I have read about RabbitMQ, but come to know that there are Redis and Kafka also in the market. So, I want to know which is best.

933k views933k
Comments
Lonnie
Lonnie

CEO - Co-founder US, Mexico Binational Tech Start-up Accelerator, Incubator at Framework Science

May 9, 2019

ReviewonAmazon DynamoDBAmazon DynamoDBAmazon RDS for PostgreSQLAmazon RDS for PostgreSQL

We use Amazon RDS for PostgreSQL because RDS and Amazon DynamoDB are two distinct database systems. DynamoDB is NoSQL DB whereas RDS is a relational database on the cloud. The pricing will mainly differ in the type of application you are using and your requirements. For some applications, both DynamoDB and RDS, can serve well, for some it might not. I do not think DynamoDB is cheaper. Right now we are helping Companies in Silicon Valley and in Southern California go SERVERLESS - drastically lowering costs if you are interested in hearing how we go about it.

9.18k views9.18k
Comments
Ishfaq
Ishfaq

Feb 28, 2020

Needs advice

Our backend application is sending some external messages to a third party application at the end of each backend (CRUD) API call (from UI) and these external messages take too much extra time (message building, processing, then sent to the third party and log success/failure), UI application has no concern to these extra third party messages.

So currently we are sending these third party messages by creating a new child thread at end of each REST API call so UI application doesn't wait for these extra third party API calls.

I want to integrate Apache Kafka for these extra third party API calls, so I can also retry on failover third party API calls in a queue(currently third party messages are sending from multiple threads at the same time which uses too much processing and resources) and logging, etc.

Question 1: Is this a use case of a message broker?

Question 2: If it is then Kafka vs RabitMQ which is the better?

804k views804k
Comments

Detailed Comparison

Amazon RDS for PostgreSQL
Amazon RDS for PostgreSQL
Kafka
Kafka

Amazon RDS manages complex and time-consuming administrative tasks such as PostgreSQL software installation and upgrades, storage management, replication for high availability and back-ups for disaster recovery. With just a few clicks in the AWS Management Console, you can deploy a PostgreSQL database with automatically configured database parameters for optimal performance. Amazon RDS for PostgreSQL database instances can be provisioned with either standard storage or Provisioned IOPS storage. Once provisioned, you can scale from 10GB to 3TB of storage and from 1,000 IOPS to 30,000 IOPS.

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

Monitoring and Metrics –Amazon RDS provides Amazon CloudWatch metrics for you DB Instance deployments at no additional charge.;DB Event Notifications –Amazon RDS provides Amazon SNS notifications via email or SMS for your DB Instance deployments.;Automatic Software Patching – Amazon RDS will make sure that the PostgreSQL software powering your deployment stays up-to-date with the latest patches.;Automated Backups – Turned on by default, the automated backup feature of Amazon RDS enables point-in-time recovery for your DB Instance.;DB Snapshots – DB Snapshots are user-initiated backups of your DB Instance.;Pre-configured Parameters – Amazon RDS for PostgreSQL deployments are pre-configured with a sensible set of parameters and settings appropriate for the DB Instance class you have selected.;PostGIS;Language Extensions :PL/Perl, PL/pgSQL, PL/Tcl;Full Text Search Dictionaries;Advanced Data Types : HStore, JSON;Core PostgreSQL engine features
Written at LinkedIn in Scala;Used by LinkedIn to offload processing of all page and other views;Defaults to using persistence, uses OS disk cache for hot data (has higher throughput then any of the above having persistence enabled);Supports both on-line as off-line processing
Statistics
GitHub Stars
-
GitHub Stars
31.2K
GitHub Forks
-
GitHub Forks
14.8K
Stacks
814
Stacks
24.2K
Followers
607
Followers
22.3K
Votes
40
Votes
607
Pros & Cons
Pros
  • 25
    Easy setup, backup, monitoring
  • 13
    Geospatial support
  • 2
    Master-master replication using Multi-AZ instance
Pros
  • 126
    High-throughput
  • 119
    Distributed
  • 92
    Scalable
  • 86
    High-Performance
  • 66
    Durable
Cons
  • 32
    Non-Java clients are second-class citizens
  • 29
    Needs Zookeeper
  • 9
    Operational difficulties
  • 5
    Terrible Packaging

What are some alternatives to Amazon RDS for PostgreSQL, Kafka?

RabbitMQ

RabbitMQ

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

Amazon SQS

Amazon SQS

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

NSQ

NSQ

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

ActiveMQ

ActiveMQ

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Gearman

Gearman

Gearman allows you to do work in parallel, to load balance processing, and to call functions between languages. It can be used in a variety of applications, from high-availability web sites to the transport of database replication events.

Heroku Postgres

Heroku Postgres

Heroku Postgres provides a SQL database-as-a-service that lets you focus on building your application instead of messing around with database management.

Memphis

Memphis

Highly scalable and effortless data streaming platform. Made to enable developers and data teams to collaborate and build real-time and streaming apps fast.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase