StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Background Jobs
  4. Message Queue
  5. Amazon SQS vs Resque

Amazon SQS vs Resque

OverviewDecisionsComparisonAlternatives

Overview

Amazon SQS
Amazon SQS
Stacks2.8K
Followers2.0K
Votes171
Resque
Resque
Stacks118
Followers126
Votes9
GitHub Stars9.5K
Forks1.7K

Amazon SQS vs Resque: What are the differences?

Key differences between Amazon SQS and Resque

  1. Message transport: One of the main differences between Amazon Simple Queue Service (SQS) and Resque is the way they handle message transport. SQS is a fully managed message queuing service that uses a distributed system to reliably deliver messages between distributed components. On the other hand, Resque is a Redis-backed Ruby library for creating background jobs and processing them with multiple workers.

  2. Message persistence: Another key difference is the way messages are persisted. In SQS, messages are stored redundantly across multiple availability zones to ensure durability. This means that even if one availability zone goes down, the messages are still available for consumption. Resque, on the other hand, stores messages in Redis, which may not have the same level of redundancy by default. However, Redis does offer various replication options that can be used to achieve a similar level of durability.

  3. Message ordering: SQS guarantees that messages will be delivered in the order they were sent, making it suitable for scenarios that require strict message ordering. In contrast, Resque does not inherently provide message ordering guarantees. Messages processed by Resque can be executed in parallel by multiple workers, which may cause the order of execution to be different from the order in which they were received.

  4. Job processing: SQS focuses on asynchronous, distributed message processing, allowing for high scalability and fault tolerance. It provides features like message visibility timeouts and delayed message delivery. Resque, on the other hand, is specifically designed for processing background jobs in Ruby. It allows developers to enqueue and process jobs asynchronously, but it may not have the same level of scalability and fault tolerance as SQS.

  5. Service management: Amazon SQS is a fully managed service provided by Amazon Web Services (AWS). This means that AWS takes care of the underlying infrastructure, including scaling, availability, and maintenance. Resque, on the other hand, requires manual management and administration of the infrastructure it runs on. This includes setting up and configuring Redis, managing worker processes, and ensuring high availability.

  6. Integration with AWS ecosystem: As an AWS service, SQS seamlessly integrates with other AWS services like AWS Lambda, Amazon S3, and Amazon EC2. It provides easy-to-use SDKs for various programming languages and offers features that support event-driven architectures. Resque, being a Ruby library, may require additional effort to integrate with other AWS services and may not have the same level of native support and compatibility.

In summary, Amazon SQS and Resque differ in their approach to message transport, message persistence, message ordering, job processing, service management, and integration with the AWS ecosystem. SQS is a fully managed message queuing service focused on highly scalable and fault-tolerant distributed processing, while Resque is a Ruby library for background job processing that requires manual management and may not have the same level of scalability and native support.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon SQS, Resque

Pulkit
Pulkit

Software Engineer

Oct 30, 2020

Needs adviceonDjangoDjangoAmazon SQSAmazon SQSRabbitMQRabbitMQ

Hi! I am creating a scraping system in Django, which involves long running tasks between 1 minute & 1 Day. As I am new to Message Brokers and Task Queues, I need advice on which architecture to use for my system. ( Amazon SQS, RabbitMQ, or Celery). The system should be autoscalable using Kubernetes(K8) based on the number of pending tasks in the queue.

474k views474k
Comments
Meili
Meili

Software engineer at Digital Science

Sep 24, 2020

Needs adviceonZeroMQZeroMQRabbitMQRabbitMQAmazon SQSAmazon SQS

Hi, we are in a ZMQ set up in a push/pull pattern, and we currently start to have more traffic and cases that the service is unavailable or stuck. We want to:

  • Not loose messages in services outages
  • Safely restart service without losing messages (@{ZeroMQ}|tool:1064| seems to need to close the socket in the receiver before restart manually)

Do you have experience with this setup with ZeroMQ? Would you suggest RabbitMQ or Amazon SQS (we are in AWS setup) instead? Something else?

Thank you for your time

500k views500k
Comments
MITHIRIDI
MITHIRIDI

Software Engineer at LightMetrics

May 8, 2020

Needs adviceonAmazon SQSAmazon SQSAmazon MQAmazon MQ

I want to schedule a message. Amazon SQS provides a delay of 15 minutes, but I want it in some hours.

Example: Let's say a Message1 is consumed by a consumer A but somehow it failed inside the consumer. I would want to put it in a queue and retry after 4hrs. Can I do this in Amazon MQ? I have seen in some Amazon MQ videos saying scheduling messages can be done. But, I'm not sure how.

303k views303k
Comments

Detailed Comparison

Amazon SQS
Amazon SQS
Resque
Resque

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

Background jobs can be any Ruby class or module that responds to perform. Your existing classes can easily be converted to background jobs or you can create new classes specifically to do work. Or, you can do both.

A queue can be created in any region.;The message payload can contain up to 256KB of text in any format. Each 64KB ‘chunk’ of payload is billed as 1 request. For example, a single API call with a 256KB payload will be billed as four requests.;Messages can be sent, received or deleted in batches of up to 10 messages or 256KB. Batches cost the same amount as single messages, meaning SQS can be even more cost effective for customers that use batching.;Long polling reduces extraneous polling to help you minimize cost while receiving new messages as quickly as possible. When your queue is empty, long-poll requests wait up to 20 seconds for the next message to arrive. Long poll requests cost the same amount as regular requests.;Messages can be retained in queues for up to 14 days.;Messages can be sent and read simultaneously.;Developers can get started with Amazon SQS by using only five APIs: CreateQueue, SendMessage, ReceiveMessage, ChangeMessageVisibility, and DeleteMessage. Additional APIs are available to provide advanced functionality.
-
Statistics
GitHub Stars
-
GitHub Stars
9.5K
GitHub Forks
-
GitHub Forks
1.7K
Stacks
2.8K
Stacks
118
Followers
2.0K
Followers
126
Votes
171
Votes
9
Pros & Cons
Pros
  • 62
    Easy to use, reliable
  • 40
    Low cost
  • 28
    Simple
  • 14
    Doesn't need to maintain it
  • 8
    It is Serverless
Cons
  • 2
    Has a max message size (currently 256K)
  • 2
    Difficult to configure
  • 2
    Proprietary
  • 1
    Has a maximum 15 minutes of delayed messages only
Pros
  • 5
    Free
  • 3
    Scalable
  • 1
    Easy to use on heroku

What are some alternatives to Amazon SQS, Resque?

Kafka

Kafka

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

RabbitMQ

RabbitMQ

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Sidekiq

Sidekiq

Sidekiq uses threads to handle many jobs at the same time in the same process. It does not require Rails but will integrate tightly with Rails 3/4 to make background processing dead simple.

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

NSQ

NSQ

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

ActiveMQ

ActiveMQ

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

Beanstalkd

Beanstalkd

Beanstalks's interface is generic, but was originally designed for reducing the latency of page views in high-volume web applications by running time-consuming tasks asynchronously.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Gearman

Gearman

Gearman allows you to do work in parallel, to load balance processing, and to call functions between languages. It can be used in a variety of applications, from high-availability web sites to the transport of database replication events.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase