StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data Tools
  5. Apache Hive vs Apache Kylin

Apache Hive vs Apache Kylin

OverviewDecisionsComparisonAlternatives

Overview

Apache Hive
Apache Hive
Stacks487
Followers475
Votes0
GitHub Stars5.9K
Forks4.8K
Apache Kylin
Apache Kylin
Stacks61
Followers236
Votes24
GitHub Stars3.8K
Forks1.5K

Apache Hive vs Apache Kylin: What are the differences?

Introduction

In this article, we will discuss the key differences between Apache Hive and Apache Kylin. Both Hive and Kylin are widely used distributed query engines for big data processing, but they differ in several aspects. Let's explore these differences in detail.

  1. Storage and Querying Approach: Apache Hive is primarily designed for batch processing and ad-hoc queries on large datasets stored in Hadoop Distributed File System (HDFS). It uses a traditional relational database approach with structured query language (SQL) for querying and supports various file formats. On the other hand, Apache Kylin is an online analytical processing (OLAP) engine that specifically focuses on providing sub-second query response time for multidimensional data analysis. It uses a pre-computed, cube-based approach to speed up query processing by aggregating data in advance.

  2. Data Model: Hive follows a schema-on-read approach, where the schema is applied at the time of querying rather than during data ingestion. It allows flexibility in handling unstructured or semi-structured data, as the schema can be defined on the fly. Kylin, on the other hand, follows a schema-on-write approach, where the schema is defined during data ingestion itself. This allows for better query performance as the data is pre-aggregated and optimized for querying.

  3. Query Performance: Hive queries may take longer to execute due to the batch processing nature and the need to scan large volumes of data. It is not suitable for real-time or interactive querying. Kylin, on the other hand, excels in query performance by leveraging pre-aggregated data cubes. It is designed to provide sub-second query response time, making it suitable for interactive data analysis and reporting.

  4. Indexing: Hive uses traditional indexes like Bitmap indexes and B+ trees for query optimization. These indexes may not be sufficient for high-performance analytical queries on large datasets. Kylin, however, uses a combination of bitmap indexes, bitmap join indexes, and pre-computed data cubes to provide efficient indexing and aggregation capabilities. This allows it to achieve fast query performance on multidimensional data.

  5. Data Storage: Hive stores data in HDFS or other file systems supported by Hadoop. It can work with a wide range of file formats and supports data compression techniques. Kylin, on the other hand, stores pre-computed data cubes in its own storage format optimized for high-performance query processing. This format is specifically designed for OLAP analysis and may not be suitable for general-purpose data storage.

  6. Data Exploration and Visualization: Hive provides basic data exploration and visualization capabilities through tools like Apache Zeppelin or third-party BI tools that can connect to Hive using JDBC or ODBC drivers. Kylin, on the other hand, provides advanced data exploration and visualization capabilities through its web-based user interface. It offers features like data cube browsing, visual query building, and charting for interactive analysis.

In summary, Apache Hive and Apache Kylin differ in their storage and querying approach, data model, query performance, indexing techniques, data storage formats, and data exploration capabilities. Hive is suitable for batch processing and ad-hoc queries on large datasets, while Kylin excels in providing sub-second query response time for multidimensional data analysis.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Apache Hive, Apache Kylin

Ashish
Ashish

Tech Lead, Big Data Platform at Pinterest

Nov 27, 2019

Needs adviceonApache HiveApache HivePrestoPrestoAmazon EC2Amazon EC2

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

3.72M views3.72M
Comments
Karthik
Karthik

CPO at Cantiz

Nov 5, 2019

Decided

The platform deals with time series data from sensors aggregated against things( event data that originates at periodic intervals). We use Cassandra as our distributed database to store time series data. Aggregated data insights from Cassandra is delivered as web API for consumption from other applications. Presto as a distributed sql querying engine, can provide a faster execution time provided the queries are tuned for proper distribution across the cluster. Another objective that we had was to combine Cassandra table data with other business data from RDBMS or other big data systems where presto through its connector architecture would have opened up a whole lot of options for us.

225k views225k
Comments

Detailed Comparison

Apache Hive
Apache Hive
Apache Kylin
Apache Kylin

Hive facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage.

Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.

Built on top of Apache Hadoop; Tools to enable easy access to data via SQL; Support for extract/transform/load (ETL), reporting, and data analysis; Access to files stored either directly in Apache HDFS and HBase; Query execution using Apache Hadoop MapReduce, Tez or Spark frameworks
Extremely Fast OLAP Engine at Scale; ANSI SQL Interface on Hadoop; Interactive Query Capability; MOLAP Cube; Seamless Integration with BI Tools
Statistics
GitHub Stars
5.9K
GitHub Stars
3.8K
GitHub Forks
4.8K
GitHub Forks
1.5K
Stacks
487
Stacks
61
Followers
475
Followers
236
Votes
0
Votes
24
Pros & Cons
No community feedback yet
Pros
  • 7
    Star schema and snowflake schema support
  • 5
    Seamless BI integration
  • 4
    OLAP on Hadoop
  • 3
    Easy install
  • 3
    Sub-second latency on extreme large dataset
Integrations
Hadoop
Hadoop
Apache Spark
Apache Spark
HBase
HBase
Hadoop
Hadoop
Apache Spark
Apache Spark
Tableau
Tableau
PowerBI
PowerBI
Superset
Superset

What are some alternatives to Apache Hive, Apache Kylin?

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Presto

Presto

Distributed SQL Query Engine for Big Data

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Druid

Druid

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Splunk

Splunk

It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.

Apache Impala

Apache Impala

Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time.

Vertica

Vertica

It provides a best-in-class, unified analytics platform that will forever be independent from underlying infrastructure.

Azure Synapse

Azure Synapse

It is an analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless on-demand or provisioned resources—at scale. It brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase