Need advice about which tool to choose?Ask the StackShare community!
Arc vs R: What are the differences?
Developers describe Arc as "A dialect of the Lisp programming language developed by Paul Graham and Robert Morris". Arc is designed for exploratory programming: the kind where you decide what to write by writing it. A good medium for exploratory programming is one that makes programs brief and malleable, so that's what we've aimed for. This is a medium for sketching software. On the other hand, R is detailed as "A language and environment for statistical computing and graphics". R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is highly extensible.
Arc and R belong to "Languages" category of the tech stack.
AdRoll, Instacart, and Verba are some of the popular companies that use R, whereas Arc is used by Helpful, Cask, and Icalia Labs. R has a broader approval, being mentioned in 128 company stacks & 97 developers stacks; compared to Arc, which is listed in 7 company stacks and 6 developer stacks.
MACHINE LEARNING
Python is the default go-to for machine learning. It has a wide variety of useful packages such as pandas and numpy to aid with ML, as well as deep-learning frameworks. Furthermore, it is more production-friendly compared to other ML languages such as R.
Pytorch is a deep-learning framework that is both flexible and fast compared to Tensorflow + Keras. It is also well documented and has a large community to answer lingering questions.
Pros of R Language
- Data analysis86
- Graphics and data visualization64
- Free55
- Great community45
- Flexible statistical analysis toolkit38
- Easy packages setup27
- Access to powerful, cutting-edge analytics27
- Interactive18
- R Studio IDE13
- Hacky9
- Shiny apps7
- Shiny interactive plots6
- Preferred Medium6
- Automated data reports5
- Cutting-edge machine learning straight from researchers4
- Machine Learning3
- Graphical visualization2
- Flexible Syntax1
Cons of R Language
- Very messy syntax6
- Tables must fit in RAM4
- Arrays indices start with 13
- Messy syntax for string concatenation2
- No push command for vectors/lists2
- Messy character encoding1
- Poor syntax for classes0
- Messy syntax for array/vector combination0