StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data As A Service
  5. AWS Lambda vs Google BigQuery

AWS Lambda vs Google BigQuery

OverviewDecisionsComparisonAlternatives

Overview

Google BigQuery
Google BigQuery
Stacks1.8K
Followers1.5K
Votes152
AWS Lambda
AWS Lambda
Stacks26.0K
Followers18.8K
Votes432

AWS Lambda vs Google BigQuery: What are the differences?

Introduction:

AWS Lambda and Google BigQuery are both popular cloud services offered by Amazon Web Services (AWS) and Google Cloud Platform respectively. Despite both being cloud-based services, there are key differences between AWS Lambda and Google BigQuery that make them unique in their functionalities and applications.

  1. Execution Model: AWS Lambda is a serverless compute service where you can run code without provisioning or managing servers. It automatically scales based on demand and you only pay for the compute time you consume. On the other hand, Google BigQuery is a serverless, highly scalable, and cost-effective multi-cloud data warehouse for analytics, which allows you to run SQL queries on large datasets.

  2. Use Case: AWS Lambda is typically used for event-driven applications and automating backend processes in response to events. It is commonly used for processing data from Amazon S3, DynamoDB, Kinesis, and other AWS services. Google BigQuery, on the other hand, is mainly used for analyzing large datasets for business intelligence, data exploration, and machine learning purposes.

  3. Pricing Model: AWS Lambda pricing is based on the number of requests and the duration of the code execution, with a free tier available for limited usage. Google BigQuery pricing is based on the amount of data processed by queries and storage costs, with on-demand and flat rate pricing options.

  4. Programming Languages: AWS Lambda supports a variety of programming languages including Node.js, Python, Java, and C#, allowing developers to choose the language they are most comfortable with. Google BigQuery, on the other hand, primarily uses SQL for querying data, making it easier for data analysts and SQL developers to work with.

  5. Scalability: AWS Lambda automatically scales to accommodate the incoming requests and can handle high volumes of concurrent executions. Google BigQuery is designed to scale horizontally to handle large datasets and queries efficiently, making it suitable for enterprise-level data processing.

  6. Data Storage: While AWS Lambda does not provide persistent storage directly, it can integrate with AWS services like Amazon S3 and DynamoDB for data storage. Google BigQuery, on the other hand, stores data in its own managed storage, making it easier to query and analyze data directly within the platform.

In Summary, AWS Lambda and Google BigQuery have key differences in their execution model, use cases, pricing, programming languages support, scalability, and data storage, making them distinct solutions for different cloud computing and data analytics needs.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Google BigQuery, AWS Lambda

Tim
Tim

CTO at Checkly Inc.

Sep 18, 2019

Needs adviceonHerokuHerokuAWS LambdaAWS Lambda

When adding a new feature to Checkly rearchitecting some older piece, I tend to pick Heroku for rolling it out. But not always, because sometimes I pick AWS Lambda . The short story:

  • Developer Experience trumps everything.
  • AWS Lambda is cheap. Up to a limit though. This impact not only your wallet.
  • If you need geographic spread, AWS is lonely at the top.

The setup

Recently, I was doing a brainstorm at a startup here in Berlin on the future of their infrastructure. They were ready to move on from their initial, almost 100% Ec2 + Chef based setup. Everything was on the table. But we crossed out a lot quite quickly:

  • Pure, uncut, self hosted Kubernetes — way too much complexity
  • Managed Kubernetes in various flavors — still too much complexity
  • Zeit — Maybe, but no Docker support
  • Elastic Beanstalk — Maybe, bit old but does the job
  • Heroku
  • Lambda

It became clear a mix of PaaS and FaaS was the way to go. What a surprise! That is exactly what I use for Checkly! But when do you pick which model?

I chopped that question up into the following categories:

  • Developer Experience / DX 🤓
  • Ops Experience / OX 🐂 (?)
  • Cost 💵
  • Lock in 🔐

Read the full post linked below for all details

357k views357k
Comments
Mark
Mark

Nov 2, 2020

Needs adviceonMicrosoft AzureMicrosoft Azure

Need advice on what platform, systems and tools to use.

Evaluating whether to start a new digital business for which we will need to build a website that handles all traffic. Website only right now. May add smartphone apps later. No desktop app will ever be added. Website to serve various countries and languages. B2B and B2C type customers. Need to handle heavy traffic, be low cost, and scale well.

We are open to either build it on AWS or on Microsoft Azure.

Apologies if I'm leaving out some info. My first post. :) Thanks in advance!

133k views133k
Comments
Julien
Julien

CTO at Hawk

Sep 19, 2020

Decided

Cloud Data-warehouse is the centerpiece of modern Data platform. The choice of the most suitable solution is therefore fundamental.

Our benchmark was conducted over BigQuery and Snowflake. These solutions seem to match our goals but they have very different approaches.

BigQuery is notably the only 100% serverless cloud data-warehouse, which requires absolutely NO maintenance: no re-clustering, no compression, no index optimization, no storage management, no performance management. Snowflake requires to set up (paid) reclustering processes, to manage the performance allocated to each profile, etc. We can also mention Redshift, which we have eliminated because this technology requires even more ops operation.

BigQuery can therefore be set up with almost zero cost of human resources. Its on-demand pricing is particularly adapted to small workloads. 0 cost when the solution is not used, only pay for the query you're running. But quickly the use of slots (with monthly or per-minute commitment) will drastically reduce the cost of use. We've reduced by 10 the cost of our nightly batches by using flex slots.

Finally, a major advantage of BigQuery is its almost perfect integration with Google Cloud Platform services: Cloud functions, Dataflow, Data Studio, etc.

BigQuery is still evolving very quickly. The next milestone, BigQuery Omni, will allow to run queries over data stored in an external Cloud platform (Amazon S3 for example). It will be a major breakthrough in the history of cloud data-warehouses. Omni will compensate a weakness of BigQuery: transferring data in near real time from S3 to BQ is not easy today. It was even simpler to implement via Snowflake's Snowpipe solution.

We also plan to use the Machine Learning features built into BigQuery to accelerate our deployment of Data-Science-based projects. An opportunity only offered by the BigQuery solution

193k views193k
Comments

Detailed Comparison

Google BigQuery
Google BigQuery
AWS Lambda
AWS Lambda

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

AWS Lambda is a compute service that runs your code in response to events and automatically manages the underlying compute resources for you. You can use AWS Lambda to extend other AWS services with custom logic, or create your own back-end services that operate at AWS scale, performance, and security.

All behind the scenes- Your queries can execute asynchronously in the background, and can be polled for status.;Import data with ease- Bulk load your data using Google Cloud Storage or stream it in bursts of up to 1,000 rows per second.;Affordable big data- The first Terabyte of data processed each month is free.;The right interface- Separate interfaces for administration and developers will make sure that you have access to the tools you need.
Extend other AWS services with custom logic;Build custom back-end services;Completely Automated Administration;Built-in Fault Tolerance;Automatic Scaling;Integrated Security Model;Bring Your Own Code;Pay Per Use;Flexible Resource Model
Statistics
Stacks
1.8K
Stacks
26.0K
Followers
1.5K
Followers
18.8K
Votes
152
Votes
432
Pros & Cons
Pros
  • 28
    High Performance
  • 25
    Easy to use
  • 22
    Fully managed service
  • 19
    Cheap Pricing
  • 16
    Process hundreds of GB in seconds
Cons
  • 1
    You can't unit test changes in BQ data
  • 0
    Sdas
Pros
  • 129
    No infrastructure
  • 83
    Cheap
  • 70
    Quick
  • 59
    Stateless
  • 47
    No deploy, no server, great sleep
Cons
  • 7
    Cant execute ruby or go
  • 3
    Compute time limited
  • 1
    Can't execute PHP w/o significant effort
Integrations
Xplenty
Xplenty
Fluentd
Fluentd
Looker
Looker
Chartio
Chartio
Treasure Data
Treasure Data
No integrations available

What are some alternatives to Google BigQuery, AWS Lambda?

Amazon Redshift

Amazon Redshift

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Qubole

Qubole

Qubole is a cloud based service that makes big data easy for analysts and data engineers.

Azure Functions

Azure Functions

Azure Functions is an event driven, compute-on-demand experience that extends the existing Azure application platform with capabilities to implement code triggered by events occurring in virtually any Azure or 3rd party service as well as on-premises systems.

Google Cloud Run

Google Cloud Run

A managed compute platform that enables you to run stateless containers that are invocable via HTTP requests. It's serverless by abstracting away all infrastructure management.

Amazon EMR

Amazon EMR

It is used in a variety of applications, including log analysis, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics.

Serverless

Serverless

Build applications comprised of microservices that run in response to events, auto-scale for you, and only charge you when they run. This lowers the total cost of maintaining your apps, enabling you to build more logic, faster. The Framework uses new event-driven compute services, like AWS Lambda, Google CloudFunctions, and more.

Altiscale

Altiscale

we run Apache Hadoop for you. We not only deploy Hadoop, we monitor, manage, fix, and update it for you. Then we take it a step further: We monitor your jobs, notify you when something’s wrong with them, and can help with tuning.

Snowflake

Snowflake

Snowflake eliminates the administration and management demands of traditional data warehouses and big data platforms. Snowflake is a true data warehouse as a service running on Amazon Web Services (AWS)—no infrastructure to manage and no knobs to turn.

Google Cloud Functions

Google Cloud Functions

Construct applications from bite-sized business logic billed to the nearest 100 milliseconds, only while your code is running

Knative

Knative

Knative provides a set of middleware components that are essential to build modern, source-centric, and container-based applications that can run anywhere: on premises, in the cloud, or even in a third-party data center

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase