StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. Azure Cosmos DB vs PostgreSQL

Azure Cosmos DB vs PostgreSQL

OverviewDecisionsComparisonAlternatives

Overview

PostgreSQL
PostgreSQL
Stacks103.0K
Followers83.9K
Votes3.6K
GitHub Stars19.0K
Forks5.2K
Azure Cosmos DB
Azure Cosmos DB
Stacks594
Followers1.1K
Votes130

Azure Cosmos DB vs PostgreSQL: What are the differences?

  1. Scalability: Azure Cosmos DB offers global distribution and scaling across multiple regions, allowing for low-latency access to data worldwide. In contrast, PostgreSQL traditionally scales vertically, requiring manual optimization for horizontal scaling, which can be more complex and time-consuming.
  2. Data Model: Azure Cosmos DB is a NoSQL database that supports schema-less data models, enabling flexibility in data representation and storage. On the other hand, PostgreSQL is a relational database that enforces a predefined schema, providing strict data consistency and relationships between tables.
  3. Consistency Levels: Azure Cosmos DB offers various consistency levels, such as strong, bounded staleness, session, consistent prefix, and eventual consistency, allowing developers to choose the level that best suits their application's requirements. PostgreSQL, on the other hand, predominantly follows the ACID properties, maintaining strong consistency by default.
  4. Query Language: Azure Cosmos DB supports SQL-like queries through its SQL API, along with MongoDB, Gremlin, Cassandra, and Table APIs, providing a multi-model approach to data access. In contrast, PostgreSQL primarily uses SQL (Structured Query Language) for querying, which is well-suited for relational data manipulation and retrieval.
  5. Geospatial Capabilities: Azure Cosmos DB includes built-in geospatial support for location-based queries and indexing, ideal for geographically distributed applications. PostgreSQL offers geospatial capabilities through extensions like PostGIS, which need to be installed and configured separately for spatial data processing.
  6. Pricing Model: Azure Cosmos DB follows a consumption-based pricing model, where users pay for provisioned throughput and storage capacity, with additional costs for features like multi-region writes. Conversely, PostgreSQL typically requires users to set up and manage their own infrastructure, potentially incurring costs for hosting, maintenance, and licensing.

In Summary, Azure Cosmos DB and PostgreSQL differ significantly in terms of scalability, data model flexibility, consistency levels, query languages, geospatial capabilities, and pricing models.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on PostgreSQL, Azure Cosmos DB

Kyle
Kyle

Web Application Developer at Redacted DevWorks

Dec 3, 2019

DecidedonPostGISPostGIS

While there's been some very clever techniques that has allowed non-natively supported geo querying to be performed, it is incredibly slow in the long game and error prone at best.

MySQL finally introduced it's own GEO functions and special indexing operations for GIS type data. I prototyped with this, as MySQL is the most familiar database to me. But no matter what I did with it, how much tuning i'd give it, how much I played with it, the results would come back inconsistent.

It was very disappointing.

I figured, at this point, that SQL Server, being an enterprise solution authored by one of the biggest worldwide software developers in the world, Microsoft, might contain some decent GIS in it.

I was very disappointed.

Postgres is a Database solution i'm still getting familiar with, but I noticed it had no built in support for GIS. So I hilariously didn't pay it too much attention. That was until I stumbled upon PostGIS and my world changed forever.

449k views449k
Comments
George
George

Student

Mar 18, 2020

Needs adviceonPostgreSQLPostgreSQLPythonPythonDjangoDjango

Hello everyone,

Well, I want to build a large-scale project, but I do not know which ORDBMS to choose. The app should handle real-time operations, not chatting, but things like future scheduling or reminders. It should be also really secure, fast and easy to use. And last but not least, should I use them both. I mean PostgreSQL with Python / Django and MongoDB with Node.js? Or would it be better to use PostgreSQL with Node.js?

*The project is going to use React for the front-end and GraphQL is going to be used for the API.

Thank you all. Any answer or advice would be really helpful!

620k views620k
Comments
Navraj
Navraj

CEO at SuPragma

Apr 16, 2020

Needs adviceonMySQLMySQLPostgreSQLPostgreSQL

I asked my last question incorrectly. Rephrasing it here.

I am looking for the most secure open source database for my project I'm starting: https://github.com/SuPragma/SuPragma/wiki

Which database is more secure? MySQL or PostgreSQL? Are there others I should be considering? Is it possible to change the encryption keys dynamically?

Thanks,

Raj

401k views401k
Comments

Detailed Comparison

PostgreSQL
PostgreSQL
Azure Cosmos DB
Azure Cosmos DB

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Azure DocumentDB is a fully managed NoSQL database service built for fast and predictable performance, high availability, elastic scaling, global distribution, and ease of development.

-
Fully managed with 99.99% Availability SLA;Elastically and highly scalable (both throughput and storage);Predictable low latency: <10ms @ P99 reads and <15ms @ P99 fully-indexed writes;Globally distributed with multi-region replication;Rich SQL queries over schema-agnostic automatic indexing;JavaScript language integrated multi-record ACID transactions with snapshot isolation;Well-defined tunable consistency models: Strong, Bounded Staleness, Session, and Eventual
Statistics
GitHub Stars
19.0K
GitHub Stars
-
GitHub Forks
5.2K
GitHub Forks
-
Stacks
103.0K
Stacks
594
Followers
83.9K
Followers
1.1K
Votes
3.6K
Votes
130
Pros & Cons
Pros
  • 765
    Relational database
  • 511
    High availability
  • 439
    Enterprise class database
  • 383
    Sql
  • 304
    Sql + nosql
Cons
  • 10
    Table/index bloatings
Pros
  • 28
    Best-of-breed NoSQL features
  • 22
    High scalability
  • 15
    Globally distributed
  • 14
    Automatic indexing over flexible json data model
  • 10
    Tunable consistency
Cons
  • 18
    Pricing
  • 4
    Poor No SQL query support
Integrations
No integrations available
Azure Machine Learning
Azure Machine Learning
MongoDB
MongoDB
Hadoop
Hadoop
Java
Java
Azure Functions
Azure Functions
Azure Container Service
Azure Container Service
Azure Storage
Azure Storage
Azure Websites
Azure Websites
Apache Spark
Apache Spark
Python
Python

What are some alternatives to PostgreSQL, Azure Cosmos DB?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

Amazon DynamoDB

Amazon DynamoDB

With it , you can offload the administrative burden of operating and scaling a highly available distributed database cluster, while paying a low price for only what you use.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase