StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Machine Learning Tools
  5. Chainer vs DataRobot

Chainer vs DataRobot

OverviewComparisonAlternatives

Overview

Chainer
Chainer
Stacks17
Followers23
Votes0
GitHub Stars5.9K
Forks1.4K
DataRobot
DataRobot
Stacks27
Followers83
Votes0

Chainer vs DataRobot: What are the differences?

What is Chainer? A Powerful, Flexible, and Intuitive Framework for Neural Networks. It is an open source deep learning framework written purely in Python on top of Numpy and CuPy Python libraries aiming at flexibility. It supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort.

What is DataRobot? Lets you accelerate your AI success today with cutting-edge machine learning and the team you have in place. It is an enterprise-grade predictive analysis software for business analysts, data scientists, executives, and IT professionals. It analyzes numerous innovative machine learning algorithms to establish, implement, and build bespoke predictive models for each situation.

Chainer and DataRobot belong to "Machine Learning Tools" category of the tech stack.

Some of the features offered by Chainer are:

  • Supports CUDA computation
  • Runs on multiple GPUs
  • Supports various network architectures

On the other hand, DataRobot provides the following key features:

  • Automated machine learning
  • Data accuracy
  • Speed

Chainer is an open source tool with 5.01K GitHub stars and 1.32K GitHub forks. Here's a link to Chainer's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Chainer
Chainer
DataRobot
DataRobot

It is an open source deep learning framework written purely in Python on top of Numpy and CuPy Python libraries aiming at flexibility. It supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort.

It is an enterprise-grade predictive analysis software for business analysts, data scientists, executives, and IT professionals. It analyzes numerous innovative machine learning algorithms to establish, implement, and build bespoke predictive models for each situation.

Supports CUDA computation;Runs on multiple GPUs ;Supports various network architectures ;Supports per-batch architectures
Automated machine learning; Data accuracy; Speed; Ease of use; Ecosystem of algorithms; Data preparation; ETL and visualization tools; Integration with enterprise security technologies; Numerous database certifications; Distributed and self-healing architecture; Hadoop cluster plug and play
Statistics
GitHub Stars
5.9K
GitHub Stars
-
GitHub Forks
1.4K
GitHub Forks
-
Stacks
17
Stacks
27
Followers
23
Followers
83
Votes
0
Votes
0
Integrations
Python
Python
NumPy
NumPy
CUDA
CUDA
Tableau
Tableau
Domino
Domino
Looker
Looker
Trifacta
Trifacta
Cloudera Enterprise
Cloudera Enterprise
Snowflake
Snowflake
Qlik Sense
Qlik Sense
AWS CloudHSM
AWS CloudHSM

What are some alternatives to Chainer, DataRobot?

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Keras

Keras

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

Kubeflow

Kubeflow

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

Streamlit

Streamlit

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

MLflow

MLflow

MLflow is an open source platform for managing the end-to-end machine learning lifecycle.

H2O

H2O

H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope