StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Machine Learning Tools
  5. DeepSpeed vs Metarank

DeepSpeed vs Metarank

OverviewComparisonAlternatives

Overview

DeepSpeed
DeepSpeed
Stacks11
Followers16
Votes0
Metarank
Metarank
Stacks2
Followers9
Votes0
GitHub Stars2.2K
Forks102

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

DeepSpeed
DeepSpeed
Metarank
Metarank

It is a deep learning optimization library that makes distributed training easy, efficient, and effective. It can train DL models with over a hundred billion parameters on the current generation of GPU clusters while achieving over 5x in system performance compared to the state-of-art. Early adopters of DeepSpeed have already produced a language model (LM) with over 17B parameters called Turing-NLG, establishing a new SOTA in the LM category.

It makes it easy to personalize any listing: recommendations, articles, and search results. Developers make one reranking API call, and Metarank takes care of ML feature updates, model training, and improving target goals like CTR/conversion.

Distributed Training with Mixed Precision; Model Parallelism; Memory and Bandwidth Optimizations; Simplified training API; Gradient Clipping; Automatic loss scaling with mixed precision; Simplified Data Loader; Performance Analysis and Debugging
Built-in feature store to compute features used for online and offline training; REST API, Kafka, Apache Pulsar connectors to receive events and metadata updates; Offline and online (real-time personalization) operation modes; Explain mode to understand how final ranking is computed; Local mode to run Metarank locally without deploying to a cluster; Cloud native: deploy Metarank to Kubernetes or AWS
Statistics
GitHub Stars
-
GitHub Stars
2.2K
GitHub Forks
-
GitHub Forks
102
Stacks
11
Stacks
2
Followers
16
Followers
9
Votes
0
Votes
0
Integrations
PyTorch
PyTorch
Kafka
Kafka
YAML
YAML
Kubernetes
Kubernetes
Apache Pulsar
Apache Pulsar
Redis
Redis
Snowplow
Snowplow
JSON
JSON

What are some alternatives to DeepSpeed, Metarank?

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Keras

Keras

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

Kubeflow

Kubeflow

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

Streamlit

Streamlit

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

MLflow

MLflow

MLflow is an open source platform for managing the end-to-end machine learning lifecycle.

H2O

H2O

H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope