StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Business Intelligence
  4. Business Intelligence
  5. Denodo vs SQueaLy

Denodo vs SQueaLy

OverviewComparisonAlternatives

Overview

SQueaLy
SQueaLy
Stacks0
Followers7
Votes0
GitHub Stars584
Forks47
Denodo
Denodo
Stacks40
Followers120
Votes0
GitHub Stars0
Forks0

SQueaLy vs Denodo: What are the differences?

SQueaLy: Fast track analytics for business. SQueaLy is an open-source, self-deployable application for developers. It is a micro service for business intelligence and analytics which uses SQL queries to generate reporting APIs with fine-grained security; Denodo: Data virtualisation platform, allowing you to connect disparate data from any source. It is the leader in data virtualization providing data access, data governance and data delivery capabilities across the broadest range of enterprise, cloud, big data, and unstructured data sources without moving the data from their original repositories.

SQueaLy and Denodo can be primarily classified as "Business Intelligence" tools.

SQueaLy is an open source tool with 567 GitHub stars and 44 GitHub forks. Here's a link to SQueaLy's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

SQueaLy
SQueaLy
Denodo
Denodo

SQueaLy is an open-source, self-deployable application for developers. It is a micro service for business intelligence and analytics which uses SQL queries to generate reporting APIs with fine-grained security.

It is the leader in data virtualization providing data access, data governance and data delivery capabilities across the broadest range of enterprise, cloud, big data, and unstructured data sources without moving the data from their original repositories.

-
Data virtualization; Data query; Data views
Statistics
GitHub Stars
584
GitHub Stars
0
GitHub Forks
47
GitHub Forks
0
Stacks
0
Stacks
40
Followers
7
Followers
120
Votes
0
Votes
0
Integrations
Heroku
Heroku
Amazon Athena
Amazon Athena
Amazon Redshift
Amazon Redshift
MySQL
MySQL
PostgreSQL
PostgreSQL
SQLite
SQLite
Swagger UI
Swagger UI
DataRobot
DataRobot
AtScale
AtScale
Vertica
Vertica
Trifacta
Trifacta
Dremio
Dremio
Apache Kylin
Apache Kylin
SAP HANA
SAP HANA

What are some alternatives to SQueaLy, Denodo?

Metabase

Metabase

It is an easy way to generate charts and dashboards, ask simple ad hoc queries without using SQL, and see detailed information about rows in your Database. You can set it up in under 5 minutes, and then give yourself and others a place to ask simple questions and understand the data your application is generating.

Superset

Superset

Superset's main goal is to make it easy to slice, dice and visualize data. It empowers users to perform analytics at the speed of thought.

Cube

Cube

Cube: the universal semantic layer that makes it easy to connect BI silos, embed analytics, and power your data apps and AI with context.

Power BI

Power BI

It aims to provide interactive visualizations and business intelligence capabilities with an interface simple enough for end users to create their own reports and dashboards.

Pandas

Pandas

Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more.

Mode

Mode

Created by analysts, for analysts, Mode is a SQL-based analytics tool that connects directly to your database. Mode is designed to alleviate the bottlenecks in today's analytical workflow and drive collaboration around data projects.

Google Datastudio

Google Datastudio

It lets you create reports and data visualizations. Data Sources are reusable components that connect a report to your data, such as Google Analytics, Google Sheets, Google AdWords and so forth. You can unlock the power of your data with interactive dashboards and engaging reports that inspire smarter business decisions.

NumPy

NumPy

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

AskNed

AskNed

AskNed is an analytics platform where enterprise users can get answers from their data by simply typing questions in plain English.

Shiny

Shiny

It is an open source R package that provides an elegant and powerful web framework for building web applications using R. It helps you turn your analyses into interactive web applications without requiring HTML, CSS, or JavaScript knowledge.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope