StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Orm
  5. Apache Spark vs Doctrine 2

Apache Spark vs Doctrine 2

OverviewDecisionsComparisonAlternatives

Overview

Doctrine 2
Doctrine 2
Stacks284
Followers207
Votes31
Apache Spark
Apache Spark
Stacks3.1K
Followers3.5K
Votes140
GitHub Stars42.2K
Forks28.9K

Doctrine 2 vs Apache Spark: What are the differences?

What is Doctrine 2? An object-relational mapper (ORM) for PHP 5.3.2+ that provides transparent persistence for PHP objects. Doctrine 2 sits on top of a powerful database abstraction layer (DBAL). One of its key features is the option to write database queries in a proprietary object oriented SQL dialect called Doctrine Query Language (DQL), inspired by Hibernates HQL.

What is Apache Spark? Fast and general engine for large-scale data processing. Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Doctrine 2 belongs to "Object Relational Mapper (ORM)" category of the tech stack, while Apache Spark can be primarily classified under "Big Data Tools".

"Great abstraction, easy to use, good docs" is the top reason why over 9 developers like Doctrine 2, while over 45 developers mention "Open-source" as the leading cause for choosing Apache Spark.

Apache Spark is an open source tool with 22.5K GitHub stars and 19.4K GitHub forks. Here's a link to Apache Spark's open source repository on GitHub.

According to the StackShare community, Apache Spark has a broader approval, being mentioned in 266 company stacks & 112 developers stacks; compared to Doctrine 2, which is listed in 35 company stacks and 12 developer stacks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Doctrine 2, Apache Spark

Nilesh
Nilesh

Technical Architect at Self Employed

Jul 8, 2020

Needs adviceonElasticsearchElasticsearchKafkaKafka

We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.

In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.

In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.

576k views576k
Comments

Detailed Comparison

Doctrine 2
Doctrine 2
Apache Spark
Apache Spark

Doctrine 2 sits on top of a powerful database abstraction layer (DBAL). One of its key features is the option to write database queries in a proprietary object oriented SQL dialect called Doctrine Query Language (DQL), inspired by Hibernates HQL.

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

-
Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk;Write applications quickly in Java, Scala or Python;Combine SQL, streaming, and complex analytics;Spark runs on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including HDFS, Cassandra, HBase, S3
Statistics
GitHub Stars
-
GitHub Stars
42.2K
GitHub Forks
-
GitHub Forks
28.9K
Stacks
284
Stacks
3.1K
Followers
207
Followers
3.5K
Votes
31
Votes
140
Pros & Cons
Pros
  • 14
    Great abstraction, easy to use, good docs
  • 10
    Object-Oriented
  • 7
    Easy setup
Pros
  • 61
    Open-source
  • 48
    Fast and Flexible
  • 8
    One platform for every big data problem
  • 8
    Great for distributed SQL like applications
  • 6
    Easy to install and to use
Cons
  • 4
    Speed
Integrations
PHP
PHP
No integrations available

What are some alternatives to Doctrine 2, Apache Spark?

Sequelize

Sequelize

Sequelize is a promise-based ORM for Node.js and io.js. It supports the dialects PostgreSQL, MySQL, MariaDB, SQLite and MSSQL and features solid transaction support, relations, read replication and more.

Presto

Presto

Distributed SQL Query Engine for Big Data

Prisma

Prisma

Prisma is an open-source database toolkit. It replaces traditional ORMs and makes database access easy with an auto-generated query builder for TypeScript & Node.js.

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Hibernate

Hibernate

Hibernate is a suite of open source projects around domain models. The flagship project is Hibernate ORM, the Object Relational Mapper.

Druid

Druid

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Apache Kylin

Apache Kylin

Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.

MikroORM

MikroORM

TypeScript ORM for Node.js based on Data Mapper, Unit of Work and Identity Map patterns. Supports MongoDB, MySQL, MariaDB, PostgreSQL and SQLite databases.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase