Elasticsearch聽vs聽Kibana

Need advice about which tool to choose?Ask the StackShare community!

Elasticsearch

23.9K
17.8K
+ 1
1.6K
Kibana

13.6K
10.3K
+ 1
254
Add tool

Elasticsearch vs Kibana: What are the differences?

What is Elasticsearch? Open Source, Distributed, RESTful Search Engine. Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

What is Kibana? Explore & Visualize Your Data. Kibana is an open source (Apache Licensed), browser based analytics and search dashboard for Elasticsearch. Kibana is a snap to setup and start using. Kibana strives to be easy to get started with, while also being flexible and powerful, just like Elasticsearch.

Elasticsearch and Kibana are primarily classified as "Search as a Service" and "Monitoring" tools respectively.

Some of the features offered by Elasticsearch are:

  • Distributed and Highly Available Search Engine.
  • Multi Tenant with Multi Types.
  • Various set of APIs including RESTful

On the other hand, Kibana provides the following key features:

  • Flexible analytics and visualization platform
  • Real-time summary and charting of streaming data
  • Intuitive interface for a variety of users

"Powerful api" is the primary reason why developers consider Elasticsearch over the competitors, whereas "Easy to setup" was stated as the key factor in picking Kibana.

Elasticsearch and Kibana are both open source tools. Elasticsearch with 42.4K GitHub stars and 14.2K forks on GitHub appears to be more popular than Kibana with 12.4K GitHub stars and 4.81K GitHub forks.

According to the StackShare community, Elasticsearch has a broader approval, being mentioned in 2003 company stacks & 979 developers stacks; compared to Kibana, which is listed in 908 company stacks and 481 developer stacks.

Advice on Elasticsearch and Kibana
Rana Usman Shahid
Chief Technology Officer at TechAvanza | 5 upvotes 路 123.2K views
Needs advice
on
Firebase
Elasticsearch
and
Algolia

Hey everybody! (1) I am developing an android application. I have data of around 3 million record (less than a TB). I want to save that data in the cloud. Which company provides the best cloud database services that would suit my scenario? It should be secured, long term useable, and provide better services. I decided to use Firebase Realtime database. Should I stick with Firebase or are there any other companies that provide a better service?

(2) I have the functionality of searching data in my app. Same data (less than a TB). Which search solution should I use in this case? I found Elasticsearch and Algolia search. It should be secure and fast. If any other company provides better services than these, please feel free to suggest them.

Thank you!

See more
Replies (2)
Josh Dzielak
Co-Founder & CTO at Orbit | 5 upvotes 路 91.9K views
Recommends
Algolia

Hi Rana, good question! From my Firebase experience, 3 million records is not too big at all, as long as the cost is within reason for you. With Firebase you will be able to access the data from anywhere, including an android app, and implement fine-grained security with JSON rules. The real-time-ness works perfectly. As a fully managed database, Firebase really takes care of everything. The only thing to watch out for is if you need complex query patterns - Firestore (also in the Firebase family) can be a better fit there.

To answer question 2: the right answer will depend on what's most important to you. Algolia is like Firebase is that it is fully-managed, very easy to set up, and has great SDKs for Android. Algolia is really a full-stack search solution in this case, and it is easy to connect with your Firebase data. Bear in mind that Algolia does cost money, so you'll want to make sure the cost is okay for you, but you will save a lot of engineering time and never have to worry about scale. The search-as-you-type performance with Algolia is flawless, as that is a primary aspect of its design. Elasticsearch can store tons of data and has all the flexibility, is hosted for cheap by many cloud services, and has many users. If you haven't done a lot with search before, the learning curve is higher than Algolia for getting the results ranked properly, and there is another learning curve if you want to do the DevOps part yourself. Both are very good platforms for search, Algolia shines when buliding your app is the most important and you don't want to spend many engineering hours, Elasticsearch shines when you have a lot of data and don't mind learning how to run and optimize it.

See more
Mike Endale
Recommends
Cloud Firestore

Rana - we use Cloud Firestore at our startup. It handles many million records without any issues. It provides you the same set of features that the Firebase Realtime Database provides on top of the indexing and security trims. The only thing to watch out for is to make sure your Cloud Functions have proper exception handling and there are no infinite loop in the code. This will be too costly if not caught quickly.

For search; Algolia is a great option, but cost is a real consideration. Indexing large number of records can be cost prohibitive for most projects. Elasticsearch is a solid alternative, but requires a little additional work to configure and maintain if you want to self-host.

Hope this helps.

See more
Needs advice
on
Grafana
and
Kibana

From a StackShare Community member: 鈥淲e need better analytics & insights into our Elasticsearch cluster. Grafana, which ships with advanced support for Elasticsearch, looks great but isn鈥檛 officially supported/endorsed by Elastic. Kibana, on the other hand, is made and supported by Elastic. I鈥檓 wondering what people suggest in this situation."

See more
Replies (7)
Recommends
Grafana
at

For our Predictive Analytics platform, we have used both Grafana and Kibana

Kibana has predictions and ML algorithms support, so if you need them, you may be better off with Kibana . The multi-variate analysis features it provide are very unique (not available in Grafana).

For everything else, definitely Grafana . Especially the number of supported data sources, and plugins clearly makes Grafana a winner (in just visualization and reporting sense). Creating your own plugin is also very easy. The top pros of Grafana (which it does better than Kibana ) are:

  • Creating and organizing visualization panels
  • Templating the panels on dashboards for repetetive tasks
  • Realtime monitoring, filtering of charts based on conditions and variables
  • Export / Import in JSON format (that allows you to version and save your dashboard as part of git)
See more
Recommends
Kibana

I use both Kibana and Grafana on my workplace: Kibana for logging and Grafana for monitoring. Since you already work with Elasticsearch, I think Kibana is the safest choice in terms of ease of use and variety of messages it can manage, while Grafana has still (in my opinion) a strong link to metrics

See more
Bram Verdonck
Recommends
Grafana
at

After looking for a way to monitor or at least get a better overview of our infrastructure, we found out that Grafana (which I previously only used in ELK stacks) has a plugin available to fully integrate with Amazon CloudWatch . Which makes it way better for our use-case than the offer of the different competitors (most of them are even paid). There is also a CloudFlare plugin available, the platform we use to serve our DNS requests. Although we are a big fan of https://smashing.github.io/ (previously dashing), for now we are starting with Grafana .

See more
Recommends
Kibana

I use Kibana because it ships with the ELK stack. I don't find it as powerful as Splunk however it is light years above grepping through log files. We previously used Grafana but found it to be annoying to maintain a separate tool outside of the ELK stack. We were able to get everything we needed from Kibana.

See more
Recommends
Kibana

Kibana should be sufficient in this architecture for decent analytics, if stronger metrics is needed then combine with Grafana. Datadog also offers nice overview but there's no need for it in this case unless you need more monitoring and alerting (and more technicalities).

See more
Recommends
Grafana

I use Grafana because it is without a doubt the best way to visualize metrics

See more
Povilas Brilius
PHP Web Developer at GroundIn Software | 0 upvotes 路 245.7K views
Recommends
Kibana
at

@Kibana, of course, because @Grafana looks like amateur sort of solution, crammed with query builder grouping aggregates, but in essence, as recommended by CERN - KIbana is the corporate (startup vectored) decision.

Furthermore, @Kibana comes with complexity adhering ELK stack, whereas @InfluxDB + @Grafana & co. recently have become sophisticated development conglomerate instead of advancing towards a understandable installation step by step inheritance.

See more
View all (7)
Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More
Pros of Elasticsearch
Pros of Kibana
  • 321
    Powerful api
  • 311
    Great search engine
  • 231
    Open source
  • 213
    Restful
  • 200
    Near real-time search
  • 96
    Free
  • 83
    Search everything
  • 54
    Easy to get started
  • 45
    Analytics
  • 26
    Distributed
  • 6
    Fast search
  • 5
    More than a search engine
  • 3
    Great docs
  • 3
    Awesome, great tool
  • 3
    Easy to scale
  • 2
    Intuitive API
  • 2
    Great piece of software
  • 2
    Fast
  • 2
    Nosql DB
  • 2
    Easy setup
  • 2
    Highly Available
  • 2
    Document Store
  • 2
    Great customer support
  • 1
    Reliable
  • 1
    Not stable
  • 1
    Potato
  • 1
    Open
  • 1
    Github
  • 1
    Elaticsearch
  • 1
    Actively developing
  • 1
    Responsive maintainers on GitHub
  • 1
    Ecosystem
  • 1
    Scalability
  • 0
    Easy to get hot data
  • 0
    Community
  • 87
    Easy to setup
  • 61
    Free
  • 44
    Can search text
  • 21
    Has pie chart
  • 13
    X-axis is not restricted to timestamp
  • 8
    Easy queries and is a good way to view logs
  • 6
    Supports Plugins
  • 3
    Dev Tools
  • 3
    More "user-friendly"
  • 3
    Can build dashboards
  • 2
    Easy to drill-down
  • 2
    Out-of-Box Dashboards/Analytics for Metrics/Heartbeat
  • 1
    Up and running

Sign up to add or upvote prosMake informed product decisions

Cons of Elasticsearch
Cons of Kibana
  • 6
    Diffecult to get started
  • 5
    Resource hungry
  • 4
    Expensive
  • 3
    Hard to keep stable at large scale
  • 5
    Unintuituve
  • 3
    Elasticsearch is huge
  • 3
    Works on top of elastic only
  • 2
    Hardweight UI

Sign up to add or upvote consMake informed product decisions

What is Elasticsearch?

Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

What is Kibana?

Kibana is an open source (Apache Licensed), browser based analytics and search dashboard for Elasticsearch. Kibana is a snap to setup and start using. Kibana strives to be easy to get started with, while also being flexible and powerful, just like Elasticsearch.

Need advice about which tool to choose?Ask the StackShare community!

What companies use Elasticsearch?
What companies use Kibana?
See which teams inside your own company are using Elasticsearch or Kibana.
Sign up for Private StackShareLearn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Elasticsearch?
What tools integrate with Kibana?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

May 21 2019 at 12:20AM

Elastic

+4
12
2872
+42
46
38954
+47
46
68584
+22
17
13227
+30
25
14898
What are some alternatives to Elasticsearch and Kibana?
Datadog
Datadog is the leading service for cloud-scale monitoring. It is used by IT, operations, and development teams who build and operate applications that run on dynamic or hybrid cloud infrastructure. Start monitoring in minutes with Datadog!
Solr
Solr is the popular, blazing fast open source enterprise search platform from the Apache Lucene project. Its major features include powerful full-text search, hit highlighting, faceted search, near real-time indexing, dynamic clustering, database integration, rich document (e.g., Word, PDF) handling, and geospatial search. Solr is highly reliable, scalable and fault tolerant, providing distributed indexing, replication and load-balanced querying, automated failover and recovery, centralized configuration and more. Solr powers the search and navigation features of many of the world's largest internet sites.
Lucene
Lucene Core, our flagship sub-project, provides Java-based indexing and search technology, as well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities.
MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.
Algolia
Our mission is to make you a search expert. Push data to our API to make it searchable in real time. Build your dream front end with one of our web or mobile UI libraries. Tune relevance and get analytics right from your dashboard.
See all alternatives
How developers use Elasticsearch and Kibana
imgur uses
Elasticsearch

Elasticsearch is the engine that powers search on the site. From a high level perspective, it鈥檚 a Lucene wrapper that exposes Lucene鈥檚 features via a RESTful API. It handles the distribution of data and simplifies scaling, among other things.

Given that we are on AWS, we use an AWS cloud plugin for Elasticsearch that makes it easy to work in the cloud. It allows us to add nodes without much hassle. It will take care of figuring out if a new node has joined the cluster, and, if so, Elasticsearch will proceed to move data to that new node. It works the same way when a node goes down. It will remove that node based on the AWS cluster configuration.

Instacart uses
Elasticsearch

The very first version of the search was just a Postgres database query. It wasn鈥檛 terribly efficient, and then at some point, we moved over to ElasticSearch, and then since then, Andrew just did a lot of work with it, so ElasticSearch is amazing, but out of the box, it doesn鈥檛 come configured with all the nice things that are there, but you spend a lot of time figuring out how to put it all together to add stemming, auto suggestions, all kinds of different things, like even spelling adjustments and tomato/tomatoes, that would return different results, so Andrew did a ton of work to make it really, really nice and build a very simple Ruby gem called SearchKick.

AngeloR uses
Elasticsearch

We use ElasticSearch for

  • Session Logs
  • Analytics
  • Leaderboards

We originally self managed the ElasticSearch clusters, but due to our small ops team size we opt to move things to managed AWS services where possible.

The managed servers, however, do not allow us to manage our own backups and a restore actually requires us to open a support ticket with them. We ended up setting up our own nightly backup since we do per day indexes for the logs/analytics.

Brandon Adams uses
Elasticsearch

Elasticsearch has good tooling and supports a large api that makes it ideal for denormalizing data. It has a simple to use aggregations api that tends to encompass most of what I need a BI tool to do, especially in the early going (when paired with Kibana). It's also handy when you just want to search some text.

Ana Phi Sancho uses
Elasticsearch

Self taught : acquired knowledge or skill on one's own initiative. Open Source Search & Analytics. -time search and analytics engine. Search engine based on Lucene. It provides a distributed, multitenant-capable full-text search engine with an HTTP web interface and schema-free JSON documents.

Clarabridge Engage uses
Kibana

Used for graphing internal logging data; including metrics related to how fast we serve pages and execute MySQL/ElasticSearch queries.

Wirkn Inc. uses
Kibana

Our Kibana instances uses our ElasticSearch search data to help answer any complicated questions we have about our data.

Hevelop uses
Kibana

Kibana is our tools to query data in Elasticsearch clusters set up as catalog search engine.

Diogo Silva uses
Kibana

Perfect for exploring and visualizing the data available at ElasticSearch

Tongliang Liu uses
Kibana

Log visualization. Wish it could add built-in alert functionality.