StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Product

  • Stacks
  • Tools
  • Companies
  • Feed

Company

  • About
  • Blog
  • Contact

Legal

  • Privacy Policy
  • Terms of Service

© 2025 StackShare. All rights reserved.

API StatusChangelog
  1. Stackups
  2. Stackups
  3. Grafana vs Kibana

Grafana vs Kibana

OverviewDecisionsComparisonAlternatives

Overview

Kibana
Kibana
Stacks20.7K
Followers16.4K
Votes262
GitHub Stars20.8K
Forks8.5K
Grafana
Grafana
Stacks18.4K
Followers14.6K
Votes415
GitHub Stars70.7K
Forks13.1K

Grafana vs Kibana: What are the differences?

Grafana is an open-source analytics and monitoring platform, while Kibana is a data visualization and exploration tool. Let's explore the key differences between them.

  1. Data Source Compatibility: Grafana supports a wide range of data sources including popular databases, cloud platforms, and monitoring tools, making it versatile for data visualization. On the other hand, Kibana is primarily designed to work with Elasticsearch, providing advanced data analysis and visualization capabilities specific to this platform.

  2. Purpose and Focus: Grafana focuses on providing a comprehensive platform for creating visually appealing dashboards and monitoring various data sources. It excels in time series data analysis and dashboard customization. In contrast, Kibana is more focused on log and event data analysis, offering powerful search capabilities, log aggregation, and anomaly detection.

  3. Plugin and Extension Ecosystem: Grafana has a vibrant community-driven ecosystem with extensive plugin and extension support. This allows users to extend the functionality, integrate with additional data sources, and customize their dashboards extensively. On the other hand, Kibana has a more limited plugin ecosystem, as it primarily relies on Elasticsearch's functionalities for data analysis.

  4. Alerting and Notification System: Grafana provides a built-in alerting and notification system, which allows users to configure and receive notifications based on specified thresholds or conditions. Kibana, on the other hand, lacks a dedicated built-in alerting mechanism, and users often rely on external tools or scripts to achieve similar functionality.

  5. User Interface and Visualization Capabilities: Grafana offers a user-friendly interface with a wide range of visualization options, including graphs, charts, tables, and maps. It provides a drag-and-drop editor for creating and customizing visualizations easily. Kibana also offers a visually appealing interface but is more focused on log analysis and visualizations specific to Elasticsearch, such as aggregations, time series visualizations, and geospatial analysis.

  6. Community and User Support: Grafana has a large and active community of users, making it easier to find resources, tutorials, and community-driven plugins. Kibana, being part of the Elastic Stack, also has a strong community but may have comparatively less diverse resources available outside the Elastic ecosystem. Additionally, Grafana has been widely adopted by various companies and organizations, further bolstering its community and user support.

In summary, Grafana excels in its data source compatibility, dashboard customization, and vibrant plugin ecosystem, making it a versatile platform for data visualization. On the other hand, Kibana focuses on log and event data analysis, providing powerful search capabilities but with a more specific focus on Elasticsearch.

Grafana or Kibana - Help me decide

By Alexey Klochay

Context

The observability of applications is an aspect growing in importance every day for software development teams. More observable applications result in improved the productivity of software teams and software organizations as a whole. The benefits of observable applications include:

  • Less time debugging, because more debug information is already available.
  • Resolving issues and incidents faster.
  • Improved awareness of changes in the environment, from operational load to customer behavior.

Two approaches for creating observable applications are monitoring and log analysis.

The monitoring of applications is usually performed by analyzing the changes in discrete data points describing the state of the system at a given moment, called metrics. Metrics are usually submitted directly to the monitoring system by the running instance of an application. That instance can be a database instance, a web server, or any other part of the web service Monitoring systems are generally focused on real-time metrics.

Logs are information about the specific events that took place at a certain moment in time. Log analysis is a post-event inquiry into the log entries, and therefore past events, that a running application produced. Due to the decreasing latency in log processing over the past years, you can now accomplish log analysis in near-real-time.

In this Stackup we look at one tool from each of the two sides: Grafana, a monitoring solution, and Kibana, a log analysis solution that is part of the Elasticsearch, Logstash, and Kibana stack, or ELK.

Use cases

At their core, Grafana and Kibana cover two different use cases and sets of functionality.

Grafana is a monitoring tool, and its functionality is optimized for monitoring tasks and time series data. The data sources it supports are those most commonly used for storing application metrics and Grafana produces alerts in real time.

Kibana, is a data visualization tool. It was created to facilitate log analysis in combination with the popular Elasticsearch and Logstash. The three tools allow you to query and parse relevant information out of the collected logs and display it in different ways.

What's the difference between the two use cases? Grafana focuses on efficiently displaying a defined set of metrics in real time. Kibana focuses on the exploration of available data and the flexibility of extracting metrics from raw log lines.

Comparison

Data sources

Both Grafana and Kibana support Elasticsearch as a data source.

Apart from Elasticsearch, Grafana supports sourcing metrics from:

  • Graphite
  • Prometheus
  • InfluxDB
  • OpenTSDB
  • MySQL, PostgreSQL, Microsoft SQL Server
  • AWS Cloudwatch

Kibana focuses on Elasticsearch and doesn't support any data sources besides Elasticsearch. However, Kibana offers more functionality for the Elasticseach source, like exploring available data and performing a full-text search on the logs.

Querying

With Kibana, you query log lines to produce metrics that you are looking for. For example, if the log lines contain information on HTTP requests:

method=post api=books result=201
method=get api=books result=200
method=get api=bookshelves result=404

If you want to present the amount of successful HTTP queries vs those that didn't return valid results, you do the following:

  • On the machine that produces the example logs above, set up Logstash to process the logs and write them to Elasticsearch.
  • In Kibana, create a time series view that looks for the items that have your desired HTTP statuses.

alt_text

A full breakdown of HTTP requests by status, country, OS and other factors in Kibana. Source: elastic.co

Every time the dashboard needs to update, the query runs and produces the most recent counts for the different HTTP statuses.

The main area of the Kibana user interface includes a search box where you can try any Elasticsearch queries, visualize the results, and save the queries that produce the results you are looking for to dashboards.

On dashboards, it is possible to refine the set of data presented by using additional search parameters introduced via a search box (another Elasticsearch query).

Grafana's interface is not optimized for exploring data, but for setting up dashboards once and using them for a long time. Grafana's interface is optimized for time series data, which is the most common visualization type in monitoring systems.

alt_text

A Grafana dashboard. Source: grafana.org

Like Kibana, Grafana allows you to narrow down the content of the dashboards with variables, a pre-set list of values you can use to filter the output of the visualizations.

Visualizations

Both Grafana and Kibana offer multiple types of data visualizations which you can use on dashboards. While both systems offer visualizations for most common use cases, Kibana goes further and also provides specialized visualizers like maps and tag clouds. Kibana also allows you to embed graphs created with the Vega framework.

You can find the most common visualization types and their availability in both Grafana and Kibana in the table below.

Visualization Grafana Kibana
Time series Yes Yes
Histogram Yes Yes
Heatmap Yes Yes
Single stat Yes Yes
Gauge Yes Yes
Table Yes Yes
Graph No Yes
Map / geospatial data No Yes

Find more details about the supported visualizations in the Grafana and Kibana docs respectively:

  • http://docs.grafana.org/features/panels/graph/
  • https://www.elastic.co/guide/en/kibana/current/createvis.html

Alerting

Grafana has a built-in alerting engine. You can configure alerts for any metric displayed as a time series, and you set via a query like this:

avg() OF query(A, 5m, now) IS BELOW 14

Where A references a metric available in Grafana.

The engine allows handling of special cases like no data available or a failed database connection. If the alert is triggered, Grafana can notify Slack, PagerDuty and other services, or send a generic webhook.

You can find out more about alerting in Grafana in the docs.

Kibana doesn't handle alerts directly but requires you to configure them in Elasticsearch via data watchers. Watchers are functions that run a query periodically and act on the result. You can currently only configure watchers via the API.

Kibana and Elasticsearch currently offer limited documentation on configuring watchers that integrate with third-party services for alerting. Example watchers currently look like this:

https://gist.github.com/skearns64/773dfd64c51d3007baf489be83549e0c

You can find more details about the Elasticsearch Watcher APIs in the documentation.

Conclusion

While monitoring and log analysis solutions contribute to the observability of applications, the tools from the two camps solve different problems and are complementary.

Collecting metrics allows the teams responsible for applications to gain visibility into the current state of a system in real time. The application needs to submit these metrics, and changing the exact metrics submitted generally requires application changes. Collecting metrics is not always possible for legacy or closed-source applications where the team operating the system doesn't have access to the code. But if you can build metrics collection into your application, then collecting and visualizing metrics is where Grafana excels.

Log analysis makes it possible to analyze events produced by the application, which is sometimes the only way to gain insight into the state of a closed system that does not produce relevant metrics. For applications that do produce metrics, log analysis can allow operators to find new trends in the system behavior and iterate on the metrics quickly without application changes. When used as part of the ELK stack, this is where Kibana excels.

Advice on Kibana, Grafana

Matt
Matt

Senior Software Engineering Manager at PayIt

May 3, 2021

DecidedonGrafanaGrafanaPrometheusPrometheusKubernetesKubernetes

Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.

1.1M views1.1M
Comments
Leonardo Henrique da
Leonardo Henrique da

Pleno QA Enginneer at SolarMarket

Dec 8, 2020

Decided

The objective of this work was to develop a system to monitor the materials of a production line using IoT technology. Currently, the process of monitoring and replacing parts depends on manual services. For this, load cells, microcontroller, Broker MQTT, Telegraf, InfluxDB, and Grafana were used. It was implemented in a workflow that had the function of collecting sensor data, storing it in a database, and visualizing it in the form of weight and quantity. With these developed solutions, he hopes to contribute to the logistics area, in the replacement and control of materials.

402k views402k
Comments
matteo1989it
matteo1989it

Jun 26, 2019

ReviewonKibanaKibanaGrafanaGrafanaElasticsearchElasticsearch

I use both Kibana and Grafana on my workplace: Kibana for logging and Grafana for monitoring. Since you already work with Elasticsearch, I think Kibana is the safest choice in terms of ease of use and variety of messages it can manage, while Grafana has still (in my opinion) a strong link to metrics

757k views757k
Comments

Detailed Comparison

Kibana
Kibana
Grafana
Grafana

Kibana is an open source (Apache Licensed), browser based analytics and search dashboard for Elasticsearch. Kibana is a snap to setup and start using. Kibana strives to be easy to get started with, while also being flexible and powerful, just like Elasticsearch.

Grafana is a general purpose dashboard and graph composer. It's focused on providing rich ways to visualize time series metrics, mainly though graphs but supports other ways to visualize data through a pluggable panel architecture. It currently has rich support for for Graphite, InfluxDB and OpenTSDB. But supports other data sources via plugins.

Flexible analytics and visualization platform;Real-time summary and charting of streaming data;Intuitive interface for a variety of users;Instant sharing and embedding of dashboards
Create, edit, save & search dashboards;Change column spans and row heights;Drag and drop panels to rearrange;Use InfluxDB or Elasticsearch as dashboard storage;Import & export dashboard (json file);Import dashboard from Graphite;Templating
Statistics
GitHub Stars
20.8K
GitHub Stars
70.7K
GitHub Forks
8.5K
GitHub Forks
13.1K
Stacks
20.7K
Stacks
18.4K
Followers
16.4K
Followers
14.6K
Votes
262
Votes
415
Pros & Cons
Pros
  • 88
    Easy to setup
  • 65
    Free
  • 45
    Can search text
  • 21
    Has pie chart
  • 13
    X-axis is not restricted to timestamp
Cons
  • 7
    Unintuituve
  • 4
    Elasticsearch is huge
  • 4
    Works on top of elastic only
  • 3
    Hardweight UI
Pros
  • 89
    Beautiful
  • 68
    Graphs are interactive
  • 57
    Free
  • 56
    Easy
  • 34
    Nicer than the Graphite web interface
Cons
  • 1
    No interactive query builder
Integrations
Logstash
Logstash
Elasticsearch
Elasticsearch
Beats
Beats
Graphite
Graphite
InfluxDB
InfluxDB

What are some alternatives to Kibana, Grafana?

Prometheus

Prometheus

Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true.

Nagios

Nagios

Nagios is a host/service/network monitoring program written in C and released under the GNU General Public License.

Netdata

Netdata

Netdata collects metrics per second & presents them in low-latency dashboards. It's designed to run on all of your physical & virtual servers, cloud deployments, Kubernetes clusters & edge/IoT devices, to monitor systems, containers & apps

Zabbix

Zabbix

Zabbix is a mature and effortless enterprise-class open source monitoring solution for network monitoring and application monitoring of millions of metrics.

Sensu

Sensu

Sensu is the future-proof solution for multi-cloud monitoring at scale. The Sensu monitoring event pipeline empowers businesses to automate their monitoring workflows and gain deep visibility into their multi-cloud environments.

Graphite

Graphite

Graphite does two things: 1) Store numeric time-series data and 2) Render graphs of this data on demand

Lumigo

Lumigo

Lumigo is an observability platform built for developers, unifying distributed tracing with payload data, log management, and real-time metrics to help you deeply understand and troubleshoot your systems.

StatsD

StatsD

It is a network daemon that runs on the Node.js platform and listens for statistics, like counters and timers, sent over UDP or TCP and sends aggregates to one or more pluggable backend services (e.g., Graphite).

Jaeger

Jaeger

Jaeger, a Distributed Tracing System

Telegraf

Telegraf

It is an agent for collecting, processing, aggregating, and writing metrics. Design goals are to have a minimal memory footprint with a plugin system so that developers in the community can easily add support for collecting metrics.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

GitHub
Bitbucket

AWS CodeCommit vs Bitbucket vs GitHub

Kubernetes
Rancher

Docker Swarm vs Kubernetes vs Rancher

gulp
Grunt

Grunt vs Webpack vs gulp

Graphite
Kibana

Grafana vs Graphite vs Kibana