StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Machine Learning Tools
  5. Keras vs TensorFlow vs scikit-learn

Keras vs TensorFlow vs scikit-learn

OverviewDecisionsComparisonAlternatives

Overview

scikit-learn
scikit-learn
Stacks1.3K
Followers1.1K
Votes45
GitHub Stars63.9K
Forks26.4K
TensorFlow
TensorFlow
Stacks3.9K
Followers3.5K
Votes106
GitHub Stars192.3K
Forks74.9K
Keras
Keras
Stacks1.1K
Followers1.1K
Votes22

Keras vs TensorFlow vs scikit-learn: What are the differences?

Introduction

In this article, we will discuss the key differences between Keras and TensorFlow, and scikit-learn, which are popular machine learning libraries. Understanding these differences can help us choose the right tool for a particular task and enable us to utilize their strengths effectively.

  1. Ease of Use: Keras is a high-level deep learning library that runs on top of TensorFlow, making it easier to build and train deep learning models. It provides a simple and intuitive interface, allowing users to quickly prototype and experiment with different architectures. In contrast, TensorFlow is a lower-level library that requires more coding and provides greater flexibility for customization. Scikit-learn, on the other hand, is a general-purpose machine learning library that provides simple and consistent APIs for various algorithms, making it easy to implement and evaluate models.

  2. Supported Algorithms: TensorFlow is a comprehensive machine learning framework that supports both deep learning and traditional machine learning algorithms. It provides a wide range of pre-built deep learning models, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), as well as tools for training and deploying them. Keras, being a part of TensorFlow, inherits all these capabilities. Scikit-learn, on the other hand, specializes in traditional machine learning algorithms and provides implementations for various supervised and unsupervised learning methods, such as regression, classification, clustering, and dimensionality reduction.

  3. Performance and Scalability: TensorFlow is optimized for large-scale distributed computing and can efficiently utilize multiple CPUs or GPUs. It supports distributed training across multiple machines, which is essential for training deep learning models on large datasets. Keras, being built on top of TensorFlow, inherits its performance and scalability benefits. Scikit-learn, being primarily designed for single-machine usage, may not scale well for very large datasets or complex models.

  4. Customization and Low-level Control: TensorFlow provides a low-level API that allows developers to have fine-grained control over the network architecture and training process. It enables the creation of custom layers, loss functions, and optimizers, making it suitable for research and advanced development. Keras, being a high-level library, sacrifices some of this flexibility in favor of simplicity and ease of use. Scikit-learn, similarly, provides a higher-level API with less customizability but focuses on providing a uniform interface for various algorithms.

  5. Community and Ecosystem: TensorFlow has a large and active community of developers, researchers, and enthusiasts, contributing to its extensive ecosystem. It has a rich set of tools, libraries, and frameworks built on top of it, making it easier to integrate with other technologies. Keras, being a part of TensorFlow, benefits from this ecosystem and community support. Scikit-learn also has a vibrant community and is widely adopted, providing a range of resources, tutorials, and third-party extensions. However, its focus is more on traditional machine learning algorithms compared to deep learning.

  6. Industry Adoption: TensorFlow and Keras have gained significant popularity and adoption in both the research and industrial communities. Many large companies and organizations use these libraries for developing and deploying deep learning models at scale. Scikit-learn, on the other hand, is widely used for traditional machine learning tasks and has become an industry standard for many common algorithms.

In Summary, Keras and TensorFlow are closely related, with Keras being a high-level API that runs on top of TensorFlow. They offer ease of use, extensive deep learning capabilities, and scalable performance, making them ideal choices for deep learning tasks. Scikit-learn, on the other hand, focuses on traditional machine learning algorithms, providing a simple and consistent interface for various supervised and unsupervised learning methods.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on scikit-learn, TensorFlow, Keras

Xi
Xi

Developer at DCSIL

Oct 11, 2020

Decided

For data analysis, we choose a Python-based framework because of Python's simplicity as well as its large community and available supporting tools. We choose PyTorch over TensorFlow for our machine learning library because it has a flatter learning curve and it is easy to debug, in addition to the fact that our team has some existing experience with PyTorch. Numpy is used for data processing because of its user-friendliness, efficiency, and integration with other tools we have chosen. Finally, we decide to include Anaconda in our dev process because of its simple setup process to provide sufficient data science environment for our purposes. The trained model then gets deployed to the back end as a pickle.

99.3k views99.3k
Comments
Adithya
Adithya

Student at PES UNIVERSITY

May 11, 2020

Needs advice

I have just started learning some basic machine learning concepts. So which of the following frameworks is better to use: Keras / TensorFlow/PyTorch. I have prior knowledge in python(and even pandas), java, js and C. It would be nice if something could point out the advantages of one over the other especially in terms of resources, documentation and flexibility. Also, could someone tell me where to find the right resources or tutorials for the above frameworks? Thanks in advance, hope you are doing well!!

107k views107k
Comments
philippe
philippe

Research & Technology & Innovation | Software & Data & Cloud | Professor in Computer Science

Sep 13, 2020

Review

Hello Amina, You need first to clearly identify the input data type (e.g. temporal data or not? seasonality or not?) and the analysis type (e.g., time series?, categories?, etc.). If you can answer these questions, that would be easier to help you identify the right tools (or Python libraries). If time series and Python, you have choice between Pendas/Statsmodels/Serima(x) (if seasonality) or deep learning techniques with Keras.

Good work, Philippe

4.64k views4.64k
Comments

Detailed Comparison

scikit-learn
scikit-learn
TensorFlow
TensorFlow
Keras
Keras

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

--
neural networks API;Allows for easy and fast prototyping;Convolutional networks support;Recurent networks support;Runs on GPU
Statistics
GitHub Stars
63.9K
GitHub Stars
192.3K
GitHub Stars
-
GitHub Forks
26.4K
GitHub Forks
74.9K
GitHub Forks
-
Stacks
1.3K
Stacks
3.9K
Stacks
1.1K
Followers
1.1K
Followers
3.5K
Followers
1.1K
Votes
45
Votes
106
Votes
22
Pros & Cons
Pros
  • 26
    Scientific computing
  • 19
    Easy
Cons
  • 2
    Limited
Pros
  • 32
    High Performance
  • 19
    Connect Research and Production
  • 16
    Deep Flexibility
  • 12
    Auto-Differentiation
  • 11
    True Portability
Cons
  • 9
    Hard
  • 6
    Hard to debug
  • 2
    Documentation not very helpful
Pros
  • 8
    Quality Documentation
  • 7
    Easy and fast NN prototyping
  • 7
    Supports Tensorflow and Theano backends
Cons
  • 4
    Hard to debug
Integrations
No integrations available
JavaScript
JavaScript
Python
Python

What are some alternatives to scikit-learn, TensorFlow, Keras?

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Kubeflow

Kubeflow

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

Streamlit

Streamlit

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

MLflow

MLflow

MLflow is an open source platform for managing the end-to-end machine learning lifecycle.

H2O

H2O

H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark.

PredictionIO

PredictionIO

PredictionIO is an open source machine learning server for software developers to create predictive features, such as personalization, recommendation and content discovery.

Gluon

Gluon

A new open source deep learning interface which allows developers to more easily and quickly build machine learning models, without compromising performance. Gluon provides a clear, concise API for defining machine learning models using a collection of pre-built, optimized neural network components.

Comet.ml

Comet.ml

Comet.ml allows data science teams and individuals to automagically track their datasets, code changes, experimentation history and production models creating efficiency, transparency, and reproducibility.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope