StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Graph Databases
  4. Graph Databases
  5. Neo4j vs Serverless

Neo4j vs Serverless

OverviewDecisionsComparisonAlternatives

Overview

Neo4j
Neo4j
Stacks1.2K
Followers1.4K
Votes351
GitHub Stars15.3K
Forks2.5K
Serverless
Serverless
Stacks2.2K
Followers1.2K
Votes28
GitHub Stars46.9K
Forks5.7K

Neo4j vs Serverless: What are the differences?

Introduction

When considering technologies for building applications, it's crucial to understand the key differences between Neo4j, a popular graph database, and Serverless, a cloud computing model that allows developers to focus on writing code without managing infrastructure.

  1. Data Structure: Neo4j is specifically designed for storing and querying connected data using a property graph model, allowing for complex relationships to be easily represented and analyzed. On the other hand, Serverless is a cloud computing model where the code execution is triggered by events and runs in stateless containers, typically used for short-lived tasks and functions rather than storing and querying data in a specific structure.

  2. Scalability: Neo4j provides horizontal scalability through its clustering capabilities, enabling large datasets to be distributed across multiple instances for increased performance. In contrast, Serverless scales effortlessly by automatically handling the allocation of resources based on demand, making it ideal for applications with fluctuating workloads without manual intervention.

  3. Resource Management: In Neo4j, users need to manage database instances, maintain indexes, and tune queries for optimal performance, requiring more hands-on involvement and expertise in database administration. With Serverless, infrastructure management is abstracted away, allowing developers to focus solely on writing code and executing functions without worrying about server provisioning, scalability, or maintenance.

  4. Pricing Model: Neo4j typically follows a traditional licensing model based on the number of cores and memory allocated for hosting the database, which may result in upfront costs and additional expenses for scaling resources. Serverless, on the other hand, operates on a pay-as-you-go pricing model, where users are charged based on the actual execution time and resources consumed, offering cost-efficiency for sporadic workloads and reducing operational expenses.

  5. Latency and Performance: Neo4j excels in delivering high performance for complex graph queries by leveraging index-free adjacency and optimized traversal algorithms, making it suitable for applications with intricate relationships and real-time processing requirements. Serverless, although scalable and cost-effective, may introduce variable latency due to the cold start times of functions, impacting the responsiveness of applications that require consistent and low latency interactions.

  6. Development Flexibility: While Neo4j provides a specialized platform for building graph-based applications, it may require additional effort to integrate with other technologies or frameworks outside the graph database ecosystem. Serverless offers more flexibility in terms of language support, integration with various cloud services, and the ability to compose functions or microservices for diverse application architectures, enabling developers to adopt a polyglot approach and leverage a broader ecosystem of tools and services.

In Summary, understanding the key differences between Neo4j and Serverless is essential for choosing the most appropriate technology stack based on the specific requirements and goals of your application.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Neo4j, Serverless

Tim
Tim

CTO at Checkly Inc.

Sep 18, 2019

Needs adviceonHerokuHerokuAWS LambdaAWS Lambda

When adding a new feature to Checkly rearchitecting some older piece, I tend to pick Heroku for rolling it out. But not always, because sometimes I pick AWS Lambda . The short story:

  • Developer Experience trumps everything.
  • AWS Lambda is cheap. Up to a limit though. This impact not only your wallet.
  • If you need geographic spread, AWS is lonely at the top.

The setup

Recently, I was doing a brainstorm at a startup here in Berlin on the future of their infrastructure. They were ready to move on from their initial, almost 100% Ec2 + Chef based setup. Everything was on the table. But we crossed out a lot quite quickly:

  • Pure, uncut, self hosted Kubernetes — way too much complexity
  • Managed Kubernetes in various flavors — still too much complexity
  • Zeit — Maybe, but no Docker support
  • Elastic Beanstalk — Maybe, bit old but does the job
  • Heroku
  • Lambda

It became clear a mix of PaaS and FaaS was the way to go. What a surprise! That is exactly what I use for Checkly! But when do you pick which model?

I chopped that question up into the following categories:

  • Developer Experience / DX 🤓
  • Ops Experience / OX 🐂 (?)
  • Cost 💵
  • Lock in 🔐

Read the full post linked below for all details

357k views357k
Comments
Jaime
Jaime

none at none

Aug 31, 2020

Needs advice

Hi, I want to create a social network for students, and I was wondering which of these three Oriented Graph DB's would you recommend. I plan to implement machine learning algorithms such as k-means and others to give recommendations and some basic data analyses; also, everything is going to be hosted in the cloud, so I expect the DB to be hosted there. I want the queries to be as fast as possible, and I like good tools to monitor my data. I would appreciate any recommendations or thoughts.

Context:

I released the MVP 6 months ago and got almost 600 users just from my university in Colombia, But now I want to expand it all over my country. I am expecting more or less 20000 users.

56.4k views56.4k
Comments

Detailed Comparison

Neo4j
Neo4j
Serverless
Serverless

Neo4j stores data in nodes connected by directed, typed relationships with properties on both, also known as a Property Graph. It is a high performance graph store with all the features expected of a mature and robust database, like a friendly query language and ACID transactions.

Build applications comprised of microservices that run in response to events, auto-scale for you, and only charge you when they run. This lowers the total cost of maintaining your apps, enabling you to build more logic, faster. The Framework uses new event-driven compute services, like AWS Lambda, Google CloudFunctions, and more.

intuitive, using a graph model for data representation;reliable, with full ACID transactions;durable and fast, using a custom disk-based, native storage engine;massively scalable, up to several billion nodes/relationships/properties;highly-available, when distributed across multiple machines;expressive, with a powerful, human readable graph query language;fast, with a powerful traversal framework for high-speed graph queries;embeddable, with a few small jars;simple, accessible by a convenient REST interface or an object-oriented Java API
-
Statistics
GitHub Stars
15.3K
GitHub Stars
46.9K
GitHub Forks
2.5K
GitHub Forks
5.7K
Stacks
1.2K
Stacks
2.2K
Followers
1.4K
Followers
1.2K
Votes
351
Votes
28
Pros & Cons
Pros
  • 69
    Cypher – graph query language
  • 61
    Great graphdb
  • 33
    Open source
  • 31
    Rest api
  • 27
    High-Performance Native API
Cons
  • 9
    Comparably slow
  • 4
    Can't store a vertex as JSON
  • 1
    Doesn't have a managed cloud service at low cost
Pros
  • 14
    API integration
  • 7
    Supports cloud functions for Google, Azure, and IBM
  • 3
    Lower cost
  • 1
    3. Simplified Management for developers to focus on cod
  • 1
    Openwhisk
Integrations
No integrations available
Azure Functions
Azure Functions
AWS Lambda
AWS Lambda
Amazon API Gateway
Amazon API Gateway

What are some alternatives to Neo4j, Serverless?

AWS Lambda

AWS Lambda

AWS Lambda is a compute service that runs your code in response to events and automatically manages the underlying compute resources for you. You can use AWS Lambda to extend other AWS services with custom logic, or create your own back-end services that operate at AWS scale, performance, and security.

Azure Functions

Azure Functions

Azure Functions is an event driven, compute-on-demand experience that extends the existing Azure application platform with capabilities to implement code triggered by events occurring in virtually any Azure or 3rd party service as well as on-premises systems.

Google Cloud Run

Google Cloud Run

A managed compute platform that enables you to run stateless containers that are invocable via HTTP requests. It's serverless by abstracting away all infrastructure management.

Google Cloud Functions

Google Cloud Functions

Construct applications from bite-sized business logic billed to the nearest 100 milliseconds, only while your code is running

Knative

Knative

Knative provides a set of middleware components that are essential to build modern, source-centric, and container-based applications that can run anywhere: on premises, in the cloud, or even in a third-party data center

OpenFaaS

OpenFaaS

Serverless Functions Made Simple for Docker and Kubernetes

Nuclio

Nuclio

nuclio is portable across IoT devices, laptops, on-premises datacenters and cloud deployments, eliminating cloud lock-ins and enabling hybrid solutions.

Dgraph

Dgraph

Dgraph's goal is to provide Google production level scale and throughput, with low enough latency to be serving real time user queries, over terabytes of structured data. Dgraph supports GraphQL-like query syntax, and responds in JSON and Protocol Buffers over GRPC and HTTP.

Apache OpenWhisk

Apache OpenWhisk

OpenWhisk is an open source serverless platform. It is enterprise grade and accessible to all developers thanks to its superior programming model and tooling. It powers IBM Cloud Functions, Adobe I/O Runtime, Naver, Nimbella among others.

RedisGraph

RedisGraph

RedisGraph is a graph database developed from scratch on top of Redis, using the new Redis Modules API to extend Redis with new commands and capabilities. Its main features include: - Simple, fast indexing and querying - Data stored in RAM, using memory-efficient custom data structures - On disk persistence - Tabular result sets - Simple and popular graph query language (Cypher) - Data Filtering, Aggregation and ordering

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase