StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. SQLite vs TimescaleDB

SQLite vs TimescaleDB

OverviewDecisionsComparisonAlternatives

Overview

SQLite
SQLite
Stacks19.9K
Followers15.2K
Votes535
TimescaleDB
TimescaleDB
Stacks227
Followers374
Votes44
GitHub Stars20.6K
Forks988

SQLite vs TimescaleDB: What are the differences?

<SQLite is a popular relational database management system known for its simplicity and ease of use, while TimescaleDB is a time-series database optimized for handling time-series data efficiently.>

1. **Data Model**: SQLite follows a traditional relational data model with tables, rows, and columns, making it well-suited for general-purpose applications. In contrast, TimescaleDB extends PostgreSQL to provide time-series specific capabilities, such as hypertables and automated data retention policies tailored for time-series data.
2. **Scaling**: SQLite is designed as a single-node database that operates on a single machine, limiting its scalability for large datasets and high write throughput. TimescaleDB, on the other hand, offers scalability through distributed, parallel query processing and horizontal scaling across multiple nodes, making it suitable for IoT, monitoring, and other time-series use cases.
3. **Performance**: While SQLite excels in read-heavy workloads due to its simplicity and lightweight design, TimescaleDB shines in write-heavy scenarios with its optimized storage engine, continuous aggregate queries, and native support for time-series data manipulations, delivering fast query performance for time-series data analysis.
4. **Data Retention Handling**: SQLite lacks built-in features for managing time-series data retention policies and data expiration, requiring manual intervention for data pruning. In comparison, TimescaleDB offers automatic data retention policies, optimized data compression, and native time-oriented functions to streamline time-series data management and ensure efficient data storage.
5. **Ecosystem Integration**: SQLite is a standalone database that can be embedded within applications, providing self-contained storage solutions for desktop, mobile, and IoT devices. In contrast, TimescaleDB integrates seamlessly with the PostgreSQL ecosystem, leveraging its robust ecosystem of extensions, tools, and community support for a wide range of analytics, monitoring, and IoT applications.
6. **Optimized Time-Series Functions**: TimescaleDB provides a rich set of time-series functions and extensions, such as time_bucket, time_weighted_average, and hyperfunctions, tailored for advanced time-series analysis and processing, offering enhanced capabilities beyond basic SQL operations for time-series data manipulation and aggregation.

In Summary, SQLite is well-suited for general-purpose applications with its simplicity and ease of use, while TimescaleDB is specialized for handling time-series data efficiently with its scalable architecture, optimized performance, and advanced time-series capabilities.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on SQLite, TimescaleDB

Dimelo
Dimelo

Nov 5, 2020

Needs adviceonSQLiteSQLiteMySQLMySQLPostgreSQLPostgreSQL

I need to add a DBMS to my stack, but I don't know which. I'm tempted to learn SQLite since it would be useful to me with its focus on local access without concurrency. However, doing so feels like I would be defeating the purpose of trying to expand my skill set since it seems like most enterprise applications have the opposite requirements.

To be able to apply what I learn to more projects, what should I try to learn? MySQL? PostgreSQL? Something else? Is there a comfortable middle ground between high applicability and ease of use?

671k views671k
Comments
Anonymous
Anonymous

Apr 21, 2020

Needs advice

We are building an IOT service with heavy write throughput and fewer reads (we need downsampling records). We prefer to have good reliability when comes to data and prefer to have data retention based on policies.

So, we are looking for what is the best underlying DB for ingesting a lot of data and do queries easily

381k views381k
Comments
Stephen
Stephen

Senior DevOps Engineer at Vital Beats

Nov 9, 2020

Review

A question you might want to think about is "What kind of experience do I want to gain, by using a DBMS?". If your aim is to have experience with SQL and any related libraries and frameworks for your language of choice (python, I think?), then it kind of doesn't matter too much which you pick so much. As others have said, SQLite would offer you the ability to very easily get started, and would give you a reasonably standard (if a little basic) SQL dialect to work with.

If your aim is actually to have a bit of "operational" experience, in terms of things like what command line tools might be available as standard for the DBMS, understanding how the DBMS handles multiple databases, when to use multiple schemas vs multiple databases, some basic privilege management etc. Then I would recommend PostgreSQL. SQLite's simplicity actually avoids most of these experiences, which is not helpful to you if that is what you hope to learn. MySQL has a few "quirks" to how it manages things like multiple databases, which may lead you to making less good decisions if you tried to take your experience over to different DBMS, especially in bigger enterprise roles. PostgreSQL is kind of a happy middle ground here, with the ability to start PostgreSQL servers via docker or docker-compose making the actual day-to-day management pretty easy, while still giving you experience of the kinds of considerations I have listed above.

At Vital Beats we make use of PostgreSQL, largely because it offers us a happy balance between good management and backup of data, and good standard command line tools, which is essential for us where we are deploying our solutions within Kubernetes / docker, and so more graphical tools are not always appropriate for us. PostgreSQL is also pretty universally supported in terms of language libraries and frameworks, without having to make compromises on how we want to store and layout our data.

316k views316k
Comments

Detailed Comparison

SQLite
SQLite
TimescaleDB
TimescaleDB

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

TimescaleDB: An open-source database built for analyzing time-series data with the power and convenience of SQL — on premise, at the edge, or in the cloud.

-
Packaged as a PostgreSQL extension;Full ANSI SQL;JOINs (e.g., across PostgreSQL tables);Complex queries;Secondary indexes;Composite indexes;Support for very high cardinality data;Triggers;Constraints;UPSERTS;JSON/JSONB;Ability to ingest out of order data;Ability to perform accurate rollups;Data retention policies;Fast deletes;Integration with PostGIS and the rest of the PostgreSQL ecosystem;
Statistics
GitHub Stars
-
GitHub Stars
20.6K
GitHub Forks
-
GitHub Forks
988
Stacks
19.9K
Stacks
227
Followers
15.2K
Followers
374
Votes
535
Votes
44
Pros & Cons
Pros
  • 163
    Lightweight
  • 135
    Portable
  • 122
    Simple
  • 81
    Sql
  • 29
    Preinstalled on iOS and Android
Cons
  • 2
    Not for multi-process of multithreaded apps
  • 1
    Needs different binaries for each platform
Pros
  • 9
    Open source
  • 8
    Easy Query Language
  • 7
    Time-series data analysis
  • 5
    Established postgresql API and support
  • 4
    Reliable
Cons
  • 5
    Licensing issues when running on managed databases
Integrations
No integrations available
Prometheus
Prometheus
Equinix Metal
Equinix Metal
Ruby
Ruby
PostgreSQL
PostgreSQL
Django
Django
Kubernetes
Kubernetes
pgAdmin
pgAdmin
Python
Python
Kafka
Kafka
Datadog
Datadog

What are some alternatives to SQLite, TimescaleDB?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

InfluxDB

InfluxDB

InfluxDB is a scalable datastore for metrics, events, and real-time analytics. It has a built-in HTTP API so you don't have to write any server side code to get up and running. InfluxDB is designed to be scalable, simple to install and manage, and fast to get data in and out.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase