What is Talos and what are its top alternatives?
Talos is a powerful threat intelligence platform that helps organizations to detect and respond to cybersecurity threats. It provides comprehensive threat data and analysis to help organizations stay ahead of potential threats. Key features of Talos include real-time threat intelligence updates, advanced threat detection capabilities, and integration with existing security tools. However, one of the limitations of Talos is that it may be too complex for small to medium-sized businesses with limited resources.
- MISP: MISP is an open-source threat intelligence platform that enables sharing, storing, and correlation of threat information. Key features include support for STIX and TAXII standards, customizable threat feeds, and integration with various security tools. Pros include its open-source nature and active community support, while cons may include the need for technical expertise to set up and maintain.
- ThreatConnect: ThreatConnect is a threat intelligence platform that offers advanced analytics, orchestration, and automation capabilities. Key features include customizable dashboards, threat indicators management, and collaborative investigations. Pros include its user-friendly interface and integration options, while cons may include its higher pricing compared to other alternatives.
- Anomali: Anomali is a threat intelligence platform that provides real-time threat intelligence feeds and analysis. Key features include threat hunting capabilities, threat intelligence sharing, and integration with various security tools. Pros include its easy-to-use interface and comprehensive threat data, while cons may include the price for larger organizations.
- FireEye Threat Intelligence: FireEye Threat Intelligence offers a range of threat intelligence services, including expert analysis, threat intelligence feeds, and customized threat reports. Key features include actionable intelligence, global threat visibility, and integration with FireEye's other security solutions. Pros include its extensive expertise in threat analysis and incident response, while cons may include the higher cost for some organizations.
- Recorded Future: Recorded Future is a threat intelligence platform that provides real-time threat intelligence and analysis. Key features include predictive analytics, threat intelligence APIs, and integration with security tools. Pros include its focus on predictive intelligence and threat trends, while cons may include the need for additional training to fully utilize its capabilities.
- Cyware: Cyware is a threat intelligence platform that offers threat sharing, analysis, and collaboration capabilities. Key features include automated threat intelligence feeds, threat monitoring, and incident response workflows. Pros include its user-friendly interface and customizable threat feeds, while cons may include the limited scalability for larger organizations.
- ThreatQuotient: ThreatQuotient is a threat intelligence platform that provides threat data aggregation, correlation, and prioritization capabilities. Key features include dynamic threat libraries, threat intelligence integrations, and customizable threat scoring. Pros include its flexibility in threat analysis workflows and integration options, while cons may include the learning curve for new users.
- IntSights: IntSights is a threat intelligence platform that offers external threat intelligence monitoring and reporting. Key features include dark web monitoring, automatic threat remediation, and threat intelligence sharing. Pros include its focus on external threat intelligence sources and automated threat response, while cons may include the emphasis on external threats over internal threats.
- Flashpoint: Flashpoint is a threat intelligence platform that provides deep and dark web intelligence, risk assessment, and threat actor attribution. Key features include intelligence reports, alerting capabilities, and expert analyst support. Pros include its focus on the dark web and threat actor analysis, while cons may include the limited integrations with other security tools.
- Silobreaker: Silobreaker is a threat intelligence platform that offers threat monitoring, analysis, and visualization capabilities. Key features include news monitoring, data enrichment, and threat analysis tools. Pros include its user-friendly interface and customizable threat visualizations, while cons may include the limited automation capabilities compared to other alternatives.
Top Alternatives to Talos
- JavaScript
JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
- Node.js
Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and efficient, perfect for data-intensive real-time applications that run across distributed devices. ...
- HTML5
HTML5 is a core technology markup language of the Internet used for structuring and presenting content for the World Wide Web. As of October 2014 this is the final and complete fifth revision of the HTML standard of the World Wide Web Consortium (W3C). The previous version, HTML 4, was standardised in 1997. ...
- PHP
Fast, flexible and pragmatic, PHP powers everything from your blog to the most popular websites in the world. ...
- Java
Java is a programming language and computing platform first released by Sun Microsystems in 1995. There are lots of applications and websites that will not work unless you have Java installed, and more are created every day. Java is fast, secure, and reliable. From laptops to datacenters, game consoles to scientific supercomputers, cell phones to the Internet, Java is everywhere! ...
- TypeScript
TypeScript is a language for application-scale JavaScript development. It's a typed superset of JavaScript that compiles to plain JavaScript. ...
- TypeScript
TypeScript is a language for application-scale JavaScript development. It's a typed superset of JavaScript that compiles to plain JavaScript. ...
Talos alternatives & related posts
JavaScript
- Can be used on frontend/backend1.7K
- It's everywhere1.5K
- Lots of great frameworks1.2K
- Fast898
- Light weight745
- Flexible425
- You can't get a device today that doesn't run js392
- Non-blocking i/o286
- Ubiquitousness237
- Expressive191
- Extended functionality to web pages55
- Relatively easy language49
- Executed on the client side46
- Relatively fast to the end user30
- Pure Javascript25
- Functional programming21
- Async15
- Full-stack13
- Setup is easy12
- Future Language of The Web12
- Its everywhere12
- Because I love functions11
- JavaScript is the New PHP11
- Like it or not, JS is part of the web standard10
- Expansive community9
- Everyone use it9
- Can be used in backend, frontend and DB9
- Easy9
- Most Popular Language in the World8
- Powerful8
- Can be used both as frontend and backend as well8
- For the good parts8
- No need to use PHP8
- Easy to hire developers8
- Agile, packages simple to use7
- Love-hate relationship7
- Photoshop has 3 JS runtimes built in7
- Evolution of C7
- It's fun7
- Hard not to use7
- Versitile7
- Its fun and fast7
- Nice7
- Popularized Class-Less Architecture & Lambdas7
- Supports lambdas and closures7
- It let's me use Babel & Typescript6
- Can be used on frontend/backend/Mobile/create PRO Ui6
- 1.6K Can be used on frontend/backend6
- Client side JS uses the visitors CPU to save Server Res6
- Easy to make something6
- Clojurescript5
- Promise relationship5
- Stockholm Syndrome5
- Function expressions are useful for callbacks5
- Scope manipulation5
- Everywhere5
- Client processing5
- What to add5
- Because it is so simple and lightweight4
- Only Programming language on browser4
- Test1
- Hard to learn1
- Test21
- Not the best1
- Easy to understand1
- Subskill #41
- Easy to learn1
- Hard 彤0
- A constant moving target, too much churn22
- Horribly inconsistent20
- Javascript is the New PHP15
- No ability to monitor memory utilitization9
- Shows Zero output in case of ANY error8
- Thinks strange results are better than errors7
- Can be ugly6
- No GitHub3
- Slow2
- HORRIBLE DOCUMENTS, faulty code, repo has bugs0
related JavaScript posts
Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.
But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.
But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.
Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Python
- Great libraries1.2K
- Readable code962
- Beautiful code847
- Rapid development788
- Large community690
- Open source438
- Elegant393
- Great community282
- Object oriented272
- Dynamic typing220
- Great standard library77
- Very fast60
- Functional programming55
- Easy to learn49
- Scientific computing45
- Great documentation35
- Productivity29
- Easy to read28
- Matlab alternative28
- Simple is better than complex24
- It's the way I think20
- Imperative19
- Free18
- Very programmer and non-programmer friendly18
- Powerfull language17
- Machine learning support17
- Fast and simple16
- Scripting14
- Explicit is better than implicit12
- Ease of development11
- Clear and easy and powerfull10
- Unlimited power9
- It's lean and fun to code8
- Import antigravity8
- Print "life is short, use python"7
- Python has great libraries for data processing7
- Although practicality beats purity6
- Now is better than never6
- Great for tooling6
- Readability counts6
- Rapid Prototyping6
- I love snakes6
- Flat is better than nested6
- Fast coding and good for competitions6
- There should be one-- and preferably only one --obvious6
- High Documented language6
- Great for analytics5
- Lists, tuples, dictionaries5
- Easy to learn and use4
- Simple and easy to learn4
- Easy to setup and run smooth4
- Web scraping4
- CG industry needs4
- Socially engaged community4
- Complex is better than complicated4
- Multiple Inheritence4
- Beautiful is better than ugly4
- Plotting4
- Many types of collections3
- Flexible and easy3
- It is Very easy , simple and will you be love programmi3
- If the implementation is hard to explain, it's a bad id3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- List comprehensions3
- No cruft3
- Generators3
- Import this3
- If the implementation is easy to explain, it may be a g3
- Can understand easily who are new to programming2
- Batteries included2
- Securit2
- Good for hacking2
- Better outcome2
- Only one way to do it2
- Because of Netflix2
- A-to-Z2
- Should START with this but not STICK with This2
- Powerful language for AI2
- Automation friendly1
- Sexy af1
- Slow1
- Procedural programming1
- Ni0
- Powerful0
- Keep it simple0
- Still divided between python 2 and python 353
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Indentations matter a lot8
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Requires C functions for dynamic modules6
- Poor DSL capabilities6
- No anonymous functions6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Circular import5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages
Node.js
- Npm1.4K
- Javascript1.3K
- Great libraries1.1K
- High-performance1K
- Open source805
- Great for apis486
- Asynchronous477
- Great community423
- Great for realtime apps390
- Great for command line utilities296
- Websockets84
- Node Modules83
- Uber Simple69
- Great modularity59
- Allows us to reuse code in the frontend58
- Easy to start42
- Great for Data Streaming35
- Realtime32
- Awesome28
- Non blocking IO25
- Can be used as a proxy18
- High performance, open source, scalable17
- Non-blocking and modular16
- Easy and Fun15
- Easy and powerful14
- Future of BackEnd13
- Same lang as AngularJS13
- Fullstack12
- Fast11
- Scalability10
- Cross platform10
- Simple9
- Mean Stack8
- Great for webapps7
- Easy concurrency7
- Typescript6
- Fast, simple code and async6
- React6
- Friendly6
- Control everything5
- Its amazingly fast and scalable5
- Easy to use and fast and goes well with JSONdb's5
- Scalable5
- Great speed5
- Fast development5
- It's fast4
- Easy to use4
- Isomorphic coolness4
- Great community3
- Not Python3
- Sooper easy for the Backend connectivity3
- TypeScript Support3
- Blazing fast3
- Performant and fast prototyping3
- Easy to learn3
- Easy3
- Scales, fast, simple, great community, npm, express3
- One language, end-to-end3
- Less boilerplate code3
- Npm i ape-updating2
- Event Driven2
- Lovely2
- Creat for apis1
- Node0
- Bound to a single CPU46
- New framework every day45
- Lots of terrible examples on the internet40
- Asynchronous programming is the worst33
- Callback24
- Javascript19
- Dependency hell11
- Dependency based on GitHub11
- Low computational power10
- Very very Slow7
- Can block whole server easily7
- Callback functions may not fire on expected sequence7
- Breaking updates4
- Unstable4
- Unneeded over complication3
- No standard approach3
- Bad transitive dependency management1
- Can't read server session1
related Node.js posts
I just finished the very first version of my new hobby project: #MovieGeeks. It is a minimalist online movie catalog for you to save the movies you want to see and for rating the movies you already saw. This is just the beginning as I am planning to add more features on the lines of sharing and discovery
For the #BackEnd I decided to use Node.js , GraphQL and MongoDB:
Node.js has a huge community so it will always be a safe choice in terms of libraries and finding solutions to problems you may have
GraphQL because I needed to improve my skills with it and because I was never comfortable with the usual REST approach. I believe GraphQL is a better option as it feels more natural to write apis, it improves the development velocity, by definition it fixes the over-fetching and under-fetching problem that is so common on REST apis, and on top of that, the community is getting bigger and bigger.
MongoDB was my choice for the database as I already have a lot of experience working on it and because, despite of some bad reputation it has acquired in the last months, I still believe it is a powerful database for at least a very long list of use cases such as the one I needed for my website
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
HTML5
- New doctype447
- Local storage389
- Canvas334
- Semantic header and footer285
- Video element240
- Geolocation121
- Form autofocus106
- Email inputs100
- Editable content85
- Application caches79
- Easy to use10
- Cleaner Code9
- Easy5
- Websockets4
- Semantical4
- Better3
- Audio element3
- Modern3
- Portability2
- Semantic Header and Footer, Geolocation, New Doctype2
- Content focused2
- Compatible2
- Very easy to learning to HTML1
- Easy to forget the tags when you're a begginner1
- Long and winding code1
related HTML5 posts
Few years ago we were building a Next.js site with a few simple forms. This required handling forms validation and submission, but instead of picking some forms library, we went with plain JavaScript and constraint validation API in HTML5. This shaved off a few KBs of dependencies and gave us full control over the validation behavior and look. I describe this approach, with its pros and cons, in a blog post.
I needed to choose a full stack of tools for cross platform mobile application design & development. After much research and trying different tools, these are what I came up with that work for me today:
For the client coding I chose Framework7 because of its performance, easy learning curve, and very well designed, beautiful UI widgets. I think it's perfect for solo development or small teams. I didn't like React Native. It felt heavy to me and rigid. Framework7 allows the use of #CSS3, which I think is the best technology to come out of the #WWW movement. No other tech has been able to allow designers and developers to develop such flexible, high performance, customisable user interface elements that are highly responsive and hardware accelerated before. Now #CSS3 includes variables and flexboxes it is truly a powerful language and there is no longer a need for preprocessors such as #SCSS / #Sass / #less. React Native contains a very limited interpretation of #CSS3 which I found very frustrating after using #CSS3 for some years already and knowing its powerful features. The other very nice feature of Framework7 is that you can even build for the browser if you want your app to be available for desktop web browsers. The latest release also includes the ability to build for #Electron so you can have MacOS, Windows and Linux desktop apps. This is not possible with React Native yet.
Framework7 runs on top of Apache Cordova. Cordova and webviews have been slated as being slow in the past. Having a game developer background I found the tweeks to make it run as smooth as silk. One of those tweeks is to use WKWebView. Another important one was using srcset on images.
I use #Template7 for the for the templating system which is a no-nonsense mobile-centric #HandleBars style extensible templating system. It's easy to write custom helpers for, is fast and has a small footprint. I'm not forced into a new paradigm or learning some new syntax. It operates with standard JavaScript, HTML5 and CSS 3. It's written by the developer of Framework7 and so dovetails with it as expected.
I configured TypeScript to work with the latest version of Framework7. I consider TypeScript to be one of the best creations to come out of Microsoft in some time. They must have an amazing team working on it. It's very powerful and flexible. It helps you catch a lot of bugs and also provides code completion in supporting IDEs. So for my IDE I use Visual Studio Code which is a blazingly fast and silky smooth editor that integrates seamlessly with TypeScript for the ultimate type checking setup (both products are produced by Microsoft).
I use Webpack and Babel to compile the JavaScript. TypeScript can compile to JavaScript directly but Babel offers a few more options and polyfills so you can use the latest (and even prerelease) JavaScript features today and compile to be backwards compatible with virtually any browser. My favorite recent addition is "optional chaining" which greatly simplifies and increases readability of a number of sections of my code dealing with getting and setting data in nested objects.
I use some Ruby scripts to process images with ImageMagick and pngquant to optimise for size and even auto insert responsive image code into the HTML5. Ruby is the ultimate cross platform scripting language. Even as your scripts become large, Ruby allows you to refactor your code easily and make it Object Oriented if necessary. I find it the quickest and easiest way to maintain certain aspects of my build process.
For the user interface design and prototyping I use Figma. Figma has an almost identical user interface to #Sketch but has the added advantage of being cross platform (MacOS and Windows). Its real-time collaboration features are outstanding and I use them a often as I work mostly on remote projects. Clients can collaborate in real-time and see changes I make as I make them. The clickable prototyping features in Figma are also very well designed and mean I can send clickable prototypes to clients to try user interface updates as they are made and get immediate feedback. I'm currently also evaluating the latest version of #AdobeXD as an alternative to Figma as it has the very cool auto-animate feature. It doesn't have real-time collaboration yet, but I heard it is proposed for 2019.
For the UI icons I use Font Awesome Pro. They have the largest selection and best looking icons you can find on the internet with several variations in styles so you can find most of the icons you want for standard projects.
For the backend I was using the #GraphCool Framework. As I later found out, #GraphQL still has some way to go in order to provide the full power of a mature graph query language so later in my project I ripped out #GraphCool and replaced it with CouchDB and Pouchdb. Primarily so I could provide good offline app support. CouchDB with Pouchdb is very flexible and efficient combination and overcomes some of the restrictions I found in #GraphQL and hence #GraphCool also. The most impressive and important feature of CouchDB is its replication. You can configure it in various ways for backups, fault tolerance, caching or conditional merging of databases. CouchDB and Pouchdb even supports storing, retrieving and serving binary or image data or other mime types. This removes a level of complexity usually present in database implementations where binary or image data is usually referenced through an #HTML5 link. With CouchDB and Pouchdb apps can operate offline and sync later, very efficiently, when the network connection is good.
I use PhoneGap when testing the app. It auto-reloads your app when its code is changed and you can also install it on Android phones to preview your app instantly. iOS is a bit more tricky cause of Apple's policies so it's not available on the App Store, but you can build it and install it yourself to your device.
So that's my latest mobile stack. What tools do you use? Have you tried these ones?
PHP
- Large community953
- Open source819
- Easy deployment767
- Great frameworks487
- The best glue on the web387
- Continual improvements235
- Good old web185
- Web foundation145
- Community packages135
- Tool support125
- Used by wordpress35
- Excellent documentation34
- Used by Facebook29
- Because of Symfony23
- Dynamic Language21
- Easy to learn17
- Cheap hosting17
- Very powerful web language15
- Awesome Language and easy to implement14
- Fast development14
- Because of Laravel14
- Composer13
- Flexibility, syntax, extensibility12
- Easiest deployment9
- Readable Code8
- Fast8
- Short development lead times7
- Most of the web uses it7
- Worst popularity quality ratio7
- Fastestest Time to Version 1.0 Deployments7
- Simple, flexible yet Scalable6
- Faster then ever6
- Open source and large community5
- Cheap to own4
- Has the best ecommerce(Magento,Prestashop,Opencart,etc)4
- Is like one zip of air4
- Open source and great framework4
- Large community, easy setup, easy deployment, framework4
- Easy to use and learn4
- Easy to learn, a big community, lot of frameworks4
- Great developer experience4
- I have no choice :(4
- Hard not to use2
- Walk away2
- Interpreted at the run time2
- FFI2
- Safe the planet2
- Used by STOMT2
- Fault tolerance2
- Great flexibility. From fast prototyping to large apps2
- Simplesaml1
- Bando1
- Secure1
- It can get you a lamborghini1
- Secure0
- So easy to learn, good practices are hard to find22
- Inconsistent API16
- Fragmented community8
- Not secure6
- No routing system3
- Hard to debug3
- Old2
related PHP posts
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
Our whole Node.js backend stack consists of the following tools:
- Lerna as a tool for multi package and multi repository management
- npm as package manager
- NestJS as Node.js framework
- TypeScript as programming language
- ExpressJS as web server
- Swagger UI for visualizing and interacting with the API’s resources
- Postman as a tool for API development
- TypeORM as object relational mapping layer
- JSON Web Token for access token management
The main reason we have chosen Node.js over PHP is related to the following artifacts:
- Made for the web and widely in use: Node.js is a software platform for developing server-side network services. Well-known projects that rely on Node.js include the blogging software Ghost, the project management tool Trello and the operating system WebOS. Node.js requires the JavaScript runtime environment V8, which was specially developed by Google for the popular Chrome browser. This guarantees a very resource-saving architecture, which qualifies Node.js especially for the operation of a web server. Ryan Dahl, the developer of Node.js, released the first stable version on May 27, 2009. He developed Node.js out of dissatisfaction with the possibilities that JavaScript offered at the time. The basic functionality of Node.js has been mapped with JavaScript since the first version, which can be expanded with a large number of different modules. The current package managers (npm or Yarn) for Node.js know more than 1,000,000 of these modules.
- Fast server-side solutions: Node.js adopts the JavaScript "event-loop" to create non-blocking I/O applications that conveniently serve simultaneous events. With the standard available asynchronous processing within JavaScript/TypeScript, highly scalable, server-side solutions can be realized. The efficient use of the CPU and the RAM is maximized and more simultaneous requests can be processed than with conventional multi-thread servers.
- A language along the entire stack: Widely used frameworks such as React or AngularJS or Vue.js, which we prefer, are written in JavaScript/TypeScript. If Node.js is now used on the server side, you can use all the advantages of a uniform script language throughout the entire application development. The same language in the back- and frontend simplifies the maintenance of the application and also the coordination within the development team.
- Flexibility: Node.js sets very few strict dependencies, rules and guidelines and thus grants a high degree of flexibility in application development. There are no strict conventions so that the appropriate architecture, design structures, modules and features can be freely selected for the development.
Java
- Great libraries603
- Widely used446
- Excellent tooling401
- Huge amount of documentation available396
- Large pool of developers available334
- Open source208
- Excellent performance203
- Great development158
- Used for android150
- Vast array of 3rd party libraries148
- Compiled Language60
- Used for Web52
- Managed memory46
- High Performance46
- Native threads45
- Statically typed43
- Easy to read35
- Great Community33
- Reliable platform29
- Sturdy garbage collection24
- JVM compatibility24
- Cross Platform Enterprise Integration22
- Good amount of APIs20
- Universal platform20
- Great Support18
- Great ecosystem14
- Backward compatible11
- Lots of boilerplate11
- Everywhere10
- Excellent SDK - JDK9
- Cross-platform7
- It's Java7
- Static typing7
- Portability6
- Mature language thus stable systems6
- Better than Ruby6
- Long term language6
- Used for Android development5
- Clojure5
- Vast Collections Library5
- Best martial for design4
- Most developers favorite4
- Old tech4
- Testable3
- History3
- Javadoc3
- Stable platform, which many new languages depend on3
- Great Structure3
- Faster than python2
- Type Safe2
- Job0
- Verbosity33
- NullpointerException27
- Nightmare to Write17
- Overcomplexity is praised in community culture16
- Boiler plate code12
- Classpath hell prior to Java 98
- No REPL6
- No property4
- Code are too long3
- Non-intuitive generic implementation2
- There is not optional parameter2
- Floating-point errors2
- Java's too statically, stronglly, and strictly typed1
- Returning Wildcard Types1
- Terrbible compared to Python/Batch Perormence1
related Java posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
When you think about test automation, it’s crucial to make it everyone’s responsibility (not just QA Engineers'). We started with Selenium and Java, but with our platform revolving around Ruby, Elixir and JavaScript, QA Engineers were left alone to automate tests. Cypress was the answer, as we could switch to JS and simply involve more people from day one. There's a downside too, as it meant testing on Chrome only, but that was "good enough" for us + if really needed we can always cover some specific cases in a different way.
TypeScript
- More intuitive and type safe javascript174
- Type safe106
- JavaScript superset80
- The best AltJS ever48
- Best AltJS for BackEnd27
- Powerful type system, including generics & JS features15
- Compile time errors11
- Nice and seamless hybrid of static and dynamic typing11
- Aligned with ES development for compatibility10
- Angular7
- Structural, rather than nominal, subtyping7
- Starts and ends with JavaScript5
- Garbage collection1
- Code may look heavy and confusing5
- Hype4
related TypeScript posts
Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.
Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.
After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...
I picked up an idea to develop and it was no brainer I had to go with React for the frontend. I was faced with challenges when it came to what component framework to use. I had worked extensively with Material-UI but I needed something different that would offer me wider range of well customized components (I became pretty slow at styling). I brought in Evergreen after several sampling and reads online but again, after several prototype development against Evergreen—since I was using TypeScript and I had to import custom Type, it felt exhaustive. After I validated Evergreen with the designs of the idea I was developing, I also noticed I might have to do a lot of styling. I later stumbled on Material Kit, the one specifically made for React . It was promising with beautifully crafted components, most of which fits into the designs pages I had on ground.
A major problem of Material Kit for me is it isn't written in TypeScript and there isn't any plans to support its TypeScript version. I rolled up my sleeve and started converting their components to TypeScript and if you'll ask me, I am still on it.
In summary, I used the Create React App with TypeScript support and I am spending some time converting Material Kit to TypeScript before I start developing against it. All of these components are going to be hosted on Bit.
If you feel I am crazy or I have gotten something wrong, I'll be willing to listen to your opinion. Also, if you want to have a share of whatever TypeScript version of Material Kit I end up coming up with, let me know.
TypeScript
- More intuitive and type safe javascript174
- Type safe106
- JavaScript superset80
- The best AltJS ever48
- Best AltJS for BackEnd27
- Powerful type system, including generics & JS features15
- Compile time errors11
- Nice and seamless hybrid of static and dynamic typing11
- Aligned with ES development for compatibility10
- Angular7
- Structural, rather than nominal, subtyping7
- Starts and ends with JavaScript5
- Garbage collection1
- Code may look heavy and confusing5
- Hype4
related TypeScript posts
Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.
Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.
After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...
I picked up an idea to develop and it was no brainer I had to go with React for the frontend. I was faced with challenges when it came to what component framework to use. I had worked extensively with Material-UI but I needed something different that would offer me wider range of well customized components (I became pretty slow at styling). I brought in Evergreen after several sampling and reads online but again, after several prototype development against Evergreen—since I was using TypeScript and I had to import custom Type, it felt exhaustive. After I validated Evergreen with the designs of the idea I was developing, I also noticed I might have to do a lot of styling. I later stumbled on Material Kit, the one specifically made for React . It was promising with beautifully crafted components, most of which fits into the designs pages I had on ground.
A major problem of Material Kit for me is it isn't written in TypeScript and there isn't any plans to support its TypeScript version. I rolled up my sleeve and started converting their components to TypeScript and if you'll ask me, I am still on it.
In summary, I used the Create React App with TypeScript support and I am spending some time converting Material Kit to TypeScript before I start developing against it. All of these components are going to be hosted on Bit.
If you feel I am crazy or I have gotten something wrong, I'll be willing to listen to your opinion. Also, if you want to have a share of whatever TypeScript version of Material Kit I end up coming up with, let me know.