What is Algorithms.io and what are its top alternatives?
Top Alternatives to Algorithms.io
- Amazon SageMaker
A fully-managed service that enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. ...
- Azure Machine Learning
Azure Machine Learning is a fully-managed cloud service that enables data scientists and developers to efficiently embed predictive analytics into their applications, helping organizations use massive data sets and bring all the benefits of the cloud to machine learning. ...
- Amazon Machine Learning
This new AWS service helps you to use all of that data you’ve been collecting to improve the quality of your decisions. You can build and fine-tune predictive models using large amounts of data, and then use Amazon Machine Learning to make predictions (in batch mode or in real-time) at scale. You can benefit from machine learning even if you don’t have an advanced degree in statistics or the desire to setup, run, and maintain your own processing and storage infrastructure. ...
- Google AI Platform
Makes it easy for machine learning developers, data scientists, and data engineers to take their ML projects from ideation to production and deployment, quickly and cost-effectively. ...
- Amazon Elastic Inference
Amazon Elastic Inference allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and Amazon SageMaker instances to reduce the cost of running deep learning inference by up to 75%. Amazon Elastic Inference supports TensorFlow, Apache MXNet, and ONNX models, with more frameworks coming soon. ...
- Amazon Personalize
Machine learning service that makes it easy for developers to add individualized recommendations to customers using their applications. ...
- NanoNets
Build a custom machine learning model without expertise or large amount of data. Just go to nanonets, upload images, wait for few minutes and integrate nanonets API to your application. ...
- BigML
BigML provides a hosted machine learning platform for advanced analytics. Through BigML's intuitive interface and/or its open API and bindings in several languages, analysts, data scientists and developers alike can quickly build fully actionable predictive models and clusters that can easily be incorporated into related applications and services. ...
Algorithms.io alternatives & related posts
related Amazon SageMaker posts
Amazon SageMaker constricts the use of their own mxnet package and does not offer a strong Kubernetes backbone. At the same time, Kubeflow is still quite buggy and cumbersome to use. Which tool is a better pick for MLOps pipelines (both from the perspective of scalability and depth)?
Which #IaaS / #PaaS to chose? Not all #Cloud providers are created equal. As you start to use one or the other, you'll build around very specific services that don't have their equivalent elsewhere.
Back in 2014/2015, this decision I made for SmartZip was a no-brainer and #AWS won. AWS has been a leader, and over the years demonstrated their capacity to innovate, and reducing toil. Like no other.
Year after year, this kept on being confirmed, as they rolled out new (managed) services, got into Serverless with AWS Lambda / FaaS And allowed domains such as #AI / #MachineLearning to be put into the hands of every developers thanks to Amazon Machine Learning or Amazon SageMaker for instance.
Should you compare with #GCP for instance, it's not quite there yet. Building around these managed services, #AWS allowed me to get my developers on a whole new level. Where they know what's under the hood. Where they know they have these services available and can build around them. Where they care and are responsible for operations and security and deployment of what they've worked on.
related Azure Machine Learning posts
Amazon Machine Learning
related Amazon Machine Learning posts
Which #IaaS / #PaaS to chose? Not all #Cloud providers are created equal. As you start to use one or the other, you'll build around very specific services that don't have their equivalent elsewhere.
Back in 2014/2015, this decision I made for SmartZip was a no-brainer and #AWS won. AWS has been a leader, and over the years demonstrated their capacity to innovate, and reducing toil. Like no other.
Year after year, this kept on being confirmed, as they rolled out new (managed) services, got into Serverless with AWS Lambda / FaaS And allowed domains such as #AI / #MachineLearning to be put into the hands of every developers thanks to Amazon Machine Learning or Amazon SageMaker for instance.
Should you compare with #GCP for instance, it's not quite there yet. Building around these managed services, #AWS allowed me to get my developers on a whole new level. Where they know what's under the hood. Where they know they have these services available and can build around them. Where they care and are responsible for operations and security and deployment of what they've worked on.
Google AI Platform
related Google AI Platform posts
related Amazon Elastic Inference posts
related Amazon Personalize posts
- Simple API7
- Easy Setup5
- Easy to use4
- Fast Training3
related NanoNets posts
BigML
- Ease of use, great REST API and ML workflow automation1