StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Search
  4. Search As A Service
  5. Amazon Elasticsearch Service vs Elasticsearch

Amazon Elasticsearch Service vs Elasticsearch

OverviewDecisionsComparisonAlternatives

Overview

Elasticsearch
Elasticsearch
Stacks35.5K
Followers27.1K
Votes1.6K
Amazon Elasticsearch Service
Amazon Elasticsearch Service
Stacks371
Followers288
Votes24

Amazon Elasticsearch Service vs Elasticsearch: What are the differences?

Introduction: In this comparison, we will look at the key differences between Amazon Elasticsearch Service and Elasticsearch. These differences will help you understand the distinctions and make an informed decision while choosing between the two options for your search and analytics needs.

  1. Ease of Deployment and Management: One key difference between Amazon Elasticsearch Service and Elasticsearch is the ease of deployment and management. Amazon Elasticsearch Service provides a fully managed service, where Amazon takes care of the infrastructure setup, management, and maintenance. On the other hand, Elasticsearch requires manual setup and management of the infrastructure, which can be time-consuming and requires technical expertise.

  2. Scalability and Availability: Amazon Elasticsearch Service offers seamless scalability, allowing you to easily adjust the capacity and storage based on your needs. It also provides high availability with automated backups and automated failover. With Elasticsearch, you need to manually configure and scale the infrastructure to handle increasing workloads and ensure high availability.

  3. Integration with AWS Ecosystem: Amazon Elasticsearch Service integrates well with the broader AWS ecosystem, allowing you to easily connect with other AWS services like Amazon S3, Amazon DynamoDB, and Amazon Kinesis. This integration simplifies data ingestion, analytics, and visualization processes. In contrast, Elasticsearch requires additional configuration and setup to integrate with AWS services.

  4. Security and Compliance: Amazon Elasticsearch Service provides enhanced security features such as Amazon Virtual Private Cloud (VPC) support, encryption at rest, and integration with AWS Identity and Access Management (IAM). It also offers compliance with industry standards like PCI DSS, HIPAA, and GDPR. Elasticsearch, on the other hand, requires manual configuration of security measures and compliance.

  5. Monitoring and Alerting: Amazon Elasticsearch Service offers built-in monitoring and alerting capabilities through integration with AWS CloudWatch. This allows you to easily monitor your cluster's health, performance, and set up alerts for specific events. Elasticsearch requires additional setup and configuration to enable comprehensive monitoring and alerting.

  6. Pricing Structure: Amazon Elasticsearch Service has a pricing structure that includes charges for the provisioned capacity, storage, and data transfer. It offers different pricing tiers based on the cluster size and usage requirements. Elasticsearch, being an open-source solution, does not have a specific pricing structure. However, you need to consider the infrastructure and operational costs associated with self-managing Elasticsearch clusters.

In summary, Amazon Elasticsearch Service provides a fully managed and highly scalable search and analytics solution with seamless integration into the AWS ecosystem, while Elasticsearch requires manual setup and management of the infrastructure. Amazon Elasticsearch Service offers enhanced security, monitoring, and alerting features and has a specific pricing structure, whereas Elasticsearch requires additional configuration and setup for these capabilities.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Elasticsearch, Amazon Elasticsearch Service

Rana Usman
Rana Usman

Chief Technology Officer at TechAvanza

Jun 4, 2020

Needs adviceonFirebaseFirebaseElasticsearchElasticsearchAlgoliaAlgolia

Hey everybody! (1) I am developing an android application. I have data of around 3 million record (less than a TB). I want to save that data in the cloud. Which company provides the best cloud database services that would suit my scenario? It should be secured, long term useable, and provide better services. I decided to use Firebase Realtime database. Should I stick with Firebase or are there any other companies that provide a better service?

(2) I have the functionality of searching data in my app. Same data (less than a TB). Which search solution should I use in this case? I found Elasticsearch and Algolia search. It should be secure and fast. If any other company provides better services than these, please feel free to suggest them.

Thank you!

408k views408k
Comments
Phillip
Phillip

Developer at Coach Align

Mar 18, 2021

Decided

The new pricing model Algolia introduced really sealed the deal for us on this one - much closer to pay-as-you-go. And didn't want to spend time learning more about hosting/optimizing Elasticsearch when that isn't our core business problem - would much rather pay others to solve that problem for us.

40.7k views40.7k
Comments
André
André

Nov 20, 2020

Needs adviceonElasticsearchElasticsearchAmazon DynamoDBAmazon DynamoDB

Hi, community, I'm planning to build a web service that will perform a text search in a data set off less than 3k well-structured JSON objects containing config data. I'm expecting no more than 20 MB of data. The general traits I need for this search are:

  • Typo tolerant (fuzzy query), so it has to match the entries even though the query does not match 100% with a word on that JSON
  • Allow a strict match mode
  • Perform the search through all the JSON values (it can reach 6 nesting levels)
  • Ignore all Keys of the JSON; I'm interested only in the values.

The only thing I'm researching at the moment is Elasticsearch, and since the rest of the stack is on AWS the Amazon ElasticSearch is my favorite candidate so far. Although, the only knowledge I have on it was fetched from some articles and Q&A that I read here and there. Is ElasticSearch a good path for this project? I'm also considering Amazon DynamoDB (which I also don't know of), but it does not look to cover the requirements of fuzzy-search and ignore the JSON properties. Thank you in advance for your precious advice!

60.3k views60.3k
Comments

Detailed Comparison

Elasticsearch
Elasticsearch
Amazon Elasticsearch Service
Amazon Elasticsearch Service

Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

Amazon Elasticsearch Service is a fully managed service that makes it easy for you to deploy, secure, and operate Elasticsearch at scale with zero down time.

Distributed and Highly Available Search Engine;Multi Tenant with Multi Types;Various set of APIs including RESTful;Clients available in many languages including Java, Python, .NET, C#, Groovy, and more;Document oriented;Reliable, Asynchronous Write Behind for long term persistency;(Near) Real Time Search;Built on top of Apache Lucene;Per operation consistency;Inverted indices with finite state transducers for full-text querying;BKD trees for storing numeric and geo data;Column store for analytics;Compatible with Hadoop using the ES-Hadoop connector;Open Source under Apache 2 and Elastic License
-
Statistics
Stacks
35.5K
Stacks
371
Followers
27.1K
Followers
288
Votes
1.6K
Votes
24
Pros & Cons
Pros
  • 329
    Powerful api
  • 315
    Great search engine
  • 231
    Open source
  • 214
    Restful
  • 200
    Near real-time search
Cons
  • 7
    Resource hungry
  • 6
    Diffecult to get started
  • 5
    Expensive
  • 4
    Hard to keep stable at large scale
Pros
  • 10
    Easy setup, monitoring and scaling
  • 7
    Document-oriented
  • 7
    Kibana
Integrations
Kibana
Kibana
Beats
Beats
Logstash
Logstash
No integrations available

What are some alternatives to Elasticsearch, Amazon Elasticsearch Service?

Algolia

Algolia

Our mission is to make you a search expert. Push data to our API to make it searchable in real time. Build your dream front end with one of our web or mobile UI libraries. Tune relevance and get analytics right from your dashboard.

Typesense

Typesense

It is an open source, typo tolerant search engine that delivers fast and relevant results out-of-the-box. has been built from scratch to offer a delightful, out-of-the-box search experience. From instant search to autosuggest, to faceted search, it has got you covered.

Amazon CloudSearch

Amazon CloudSearch

Amazon CloudSearch enables you to search large collections of data such as web pages, document files, forum posts, or product information. With a few clicks in the AWS Management Console, you can create a search domain, upload the data you want to make searchable to Amazon CloudSearch, and the search service automatically provisions the required technology resources and deploys a highly tuned search index.

Manticore Search

Manticore Search

It is a full-text search engine written in C++ and a fork of Sphinx Search. It's designed to be simple to use, light and fast, while allowing advanced full-text searching. Connectivity is provided via a MySQL compatible protocol or HTTP, making it easy to integrate.

Azure Search

Azure Search

Azure Search makes it easy to add powerful and sophisticated search capabilities to your website or application. Quickly and easily tune search results and construct rich, fine-tuned ranking models to tie search results to business goals. Reliable throughput and storage provide fast search indexing and querying to support time-sensitive search scenarios.

Swiftype

Swiftype

Swiftype is the easiest way to add great search to your website or mobile application.

MeiliSearch

MeiliSearch

It is a powerful, fast, open-source, easy to use, and deploy search engine. The search and indexation are fully customizable and handles features like typo-tolerance, filters, and synonyms.

Quickwit

Quickwit

It is the next-gen search & analytics engine built for logs. It is designed from the ground up to offer cost-efficiency and high reliability on large data sets. Its benefits are most apparent in multi-tenancy or multi-index settings.

Bonsai

Bonsai

Your customers expect fast, near-magical results from your search. Help them find what they’re looking for with Bonsai Elasticsearch. Our fully managed Elasticsearch solution makes it easy to create, manage, and test your app's search.

Azure Cognitive Search

Azure Cognitive Search

It is the only cloud search service with built-in AI capabilities that enrich all types of information to easily identify and explore relevant content at scale. Formerly known as Azure Search, it uses the same integrated Microsoft natural language stack that Bing and Office have used for more than a decade and AI services across vision, language and speech. Spend more time innovating and less time maintaining a complex cloud search solution.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope