With Redshift Spectrum, you can extend the analytic power of Amazon Redshift beyond data stored on local disks in your data warehouse to query vast amounts of unstructured data in your Amazon S3 “data lake” -- without having to load or transform any data. | Apache Pinot is a fast, scalable real-time analytics database. It is a column-oriented distributed Online Analytics Processing (OLAP) database designed for high concurrency and low latency. It can scan petabyte-scale data and produce results even as fast as single-digit milliseconds. |
| - | Real-time ingestion (Kafka, Kinesis, Pulsar);
Real-time upserts;
Batch ingestion (Flink, Hadoop, Spark);
SQL ingestion (Snowflake,
BigQuery);
Ingestion time pre-processing (transforms, flattening, rollups);
Flexible indexing types (star-tree, Bloom filter, forward, inverted,
geospatial, JSON, range, text, timestamp);
Automatic data replication and partitioning;
Encryption (on disk; transport);
Easy table management (backfills, dynamic re-indexing, minions for dynamic data layout changes);
Schema evolution;
Nested columns |
Statistics | |
GitHub Stars - | GitHub Stars 5.9K |
GitHub Forks - | GitHub Forks 1.4K |
Stacks 99 | Stacks 5 |
Followers 147 | Followers 3 |
Votes 3 | Votes 0 |
Pros & Cons | |
Pros
| No community feedback yet |
Integrations | |

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Distributed SQL Query Engine for Big Data

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.

It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.

Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time.

It provides a best-in-class, unified analytics platform that will forever be independent from underlying infrastructure.