What is Chalice and what are its top alternatives?
Chalice is a serverless microframework for AWS that allows users to quickly create and deploy applications. It simplifies the process of setting up APIs, managing resources, and handling permission configurations. However, Chalice has limitations such as being tightly coupled with AWS, limited support for testing, and lack of flexibility in terms of customization.
- Serverless Framework: Serverless Framework is an open-source tool that supports multiple cloud providers including AWS, Azure, and Google Cloud. It offers a rich set of features for building, deploying, and managing serverless applications. Pros: Multi-cloud support, extensive plugin ecosystem. Cons: Steeper learning curve compared to Chalice.
- AWS SAM (Serverless Application Model): AWS SAM is a framework for easily defining serverless applications on AWS. It provides a simplified way to specify the Amazon API Gateway APIs, AWS Lambda functions, and other resources needed by the application. Pros: Native AWS integration, easy to get started. Cons: Limited support for other cloud providers.
- Zappa: Zappa is a serverless framework specifically designed for Python applications on AWS Lambda and API Gateway. It automates the deployment process and provides features like automatic scaling and scheduling. Pros: Focus on Python, flexible configuration options. Cons: Limited to AWS, may require manual intervention for complex setups.
- OpenFaaS: OpenFaaS is an open-source serverless platform that allows users to run serverless functions on any cloud or on-premises infrastructure. It provides a rich set of features for building, deploying, and monitoring functions. Pros: Platform agnostic, supports multiple programming languages. Cons: More complex setup compared to Chalice.
- Azure Functions: Azure Functions is a serverless compute service that allows users to run event-triggered code without having to explicitly provision or manage infrastructure. It offers seamless integration with other Azure services. Pros: Integrated with Azure services, easy debugging. Cons: Limited to Microsoft Azure, may require additional setup for advanced configurations.
- Kubeless: Kubeless is a Kubernetes-native serverless framework that allows users to deploy functions on top of Kubernetes. It provides a seamless integration with Kubernetes resources and enables users to easily run serverless workloads on Kubernetes clusters. Pros: Kubernetes integration, scalable architecture. Cons: Requires Kubernetes expertise, additional overhead compared to Chalice.
- Nuclio: Nuclio is an open-source serverless platform that enables high-performance serverless functions on Kubernetes. It is designed for event-driven applications and offers features like auto-scaling and real-time processing. Pros: High-performance computing, real-time capabilities. Cons: Requires Kubernetes knowledge, limited community support compared to Chalice.
- Knative: Knative is an open-source platform that enables serverless containers on Kubernetes. It provides a set of building blocks for building, deploying, and managing serverless workloads on Kubernetes clusters. Pros: Containers support, scalable architecture. Cons: Requires Kubernetes expertise, may have a steeper learning curve for beginners.
- Google Cloud Functions: Google Cloud Functions is a serverless compute service that allows users to run event-driven functions on Google Cloud Platform. It provides seamless integration with other GCP services and offers features like automatic scaling and monitoring. Pros: Integrated with GCP services, easy to use. Cons: Limited to Google Cloud, may require additional setup for complex applications.
- Fission: Fission is an open-source serverless framework that focuses on developer productivity by providing rapid iteration and deployment of functions. It supports multiple programming languages and integrates with Kubernetes for scalable workloads. Pros: Developer-friendly, Kubernetes integration. Cons: Limited community support, may have a learning curve for beginners.
Top Alternatives to Chalice
- Zappa
Zappa makes it super easy to deploy all Python WSGI applications on AWS Lambda + API Gateway. Think of it as "serverless" web hosting for your Python web apps. That means infinite scaling, zero downtime, zero maintenance - and at a fraction of the cost of your current deployments! ...
- Flask
Flask is intended for getting started very quickly and was developed with best intentions in mind. ...
- Serverless
Build applications comprised of microservices that run in response to events, auto-scale for you, and only charge you when they run. This lowers the total cost of maintaining your apps, enabling you to build more logic, faster. The Framework uses new event-driven compute services, like AWS Lambda, Google CloudFunctions, and more. ...
- NGINX
nginx [engine x] is an HTTP and reverse proxy server, as well as a mail proxy server, written by Igor Sysoev. According to Netcraft nginx served or proxied 30.46% of the top million busiest sites in Jan 2018. ...
- Apache HTTP Server
The Apache HTTP Server is a powerful and flexible HTTP/1.1 compliant web server. Originally designed as a replacement for the NCSA HTTP Server, it has grown to be the most popular web server on the Internet. ...
- Amazon EC2
It is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale computing easier for developers. ...
- Firebase
Firebase is a cloud service designed to power real-time, collaborative applications. Simply add the Firebase library to your application to gain access to a shared data structure; any changes you make to that data are automatically synchronized with the Firebase cloud and with other clients within milliseconds. ...
- Amazon Web Services (AWS)
It is a comprehensive and broadly adopted cloud platform, offering over 200 fully featured services from data centers globally. ...
Chalice alternatives & related posts
related Zappa posts
Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.
We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient
Based on the above criteria, we selected the following tools to perform the end to end data replication:
We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.
We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.
In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.
Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.
In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!
At FundsCorner, we are on a mission to enable fast accessible credit to India’s Kirana Stores. We are an early stage startup with an ultra small Engineering team. All the tech decisions we have made until now are based on our core philosophy: "Build usable products fast".
Based on the above fundamentals, we chose Python as our base language for all our APIs and micro-services. It is ultra easy to start with, yet provides great libraries even for the most complex of use cases. Our entire backend stack runs on Python and we cannot be more happy with it! If you are looking to deploy your API as server-less, Python provides one of the least cold start times.
We build our APIs with Flask. For backend database, our natural choice was MongoDB. It frees up our time from complex database specifications - we instead use our time in doing sensible data modelling & once we finalize the data model, we integrate it into Flask using Swagger UI. Mongo supports complex queries to cull out difficult data through aggregation framework & we have even built an internal framework called "Poetry", for aggregation queries.
Our web apps are built on Vue.js , Vuetify and vuex. Initially we debated a lot around choosing Vue.js or React , but finally settled with Vue.js, mainly because of the ease of use, fast development cycles & awesome set of libraries and utilities backing Vue.
You simply cannot go wrong with Vue.js . Great documentation, the library is ultra compact & is blazing fast. Choosing Vue.js was one of the critical decisions made, which enabled us to launch our web app in under a month (which otherwise would have taken 3 months easily). For those folks who are looking for big names, Adobe, and Alibaba and Gitlab are using Vue.
By choosing Vuetify, we saved thousands of person hours in designing the CSS files. Vuetify contains all key material components for designing a smooth User experience & it just works! It's an awesome framework. All of us at FundsCorner are now lifelong fanboys of Vue.js and Vuetify.
On the infrastructure side, all our API services and backend services are deployed as server less micro-services through Zappa. Zappa makes your life super easy by packaging everything that is required to deploy your code as AWS Lambda. We are now addicted to the single - click deploys / updates through Zappa. Try it out & you will convert!
Also, if you are using Zappa, you can greatly simplify your CI / CD pipelines. Do try it! It's just awesome! and... you will be astonished by the savings you have made on AWS bills at end of the month.
Our CI / CD pipelines are built using GitLab CI. The documentation is very good & it enables you to go from from concept to production in minimal time frame.
We use Sentry for all crash reporting and resolution. Pro tip, they do have handlers for AWS Lambda , which made our integration super easy.
All our micro-services including APIs are event-driven. Our background micro-services are message oriented & we use Amazon SQS as our message pipe. We have our own in-house workflow manager to orchestrate across micro - services.
We host our static websites on Netlify. One of the cool things about Netlify is the automated CI / CD on git push. You just do a git push to deploy! Again, it is super simple to use and it just works. We were dogmatic about going server less even on static web sites & you can go server less on Netlify in a few minutes. It's just a few clicks away.
We use Google Compute Engine, especially Google Vision for our AI experiments.
For Ops automation, we use Slack. Slack provides a super-rich API (through Slack App) through which you can weave magical automation on boring ops tasks.
- For it flexibility10
- Flexibilty and easy to use9
- Flask8
- User friendly7
- Secured6
- Unopinionated5
- Secure2
- Customizable1
- Simple to use1
- Powerful1
- Rapid development1
- Beautiful code1
- Easy to develop and maintain applications1
- Easy to setup and get it going1
- Easy to use1
- Documentation1
- Python1
- Minimal1
- Lightweight1
- Easy to get started1
- Orm1
- Not JS1
- Perfect for small to large projects with superb docs.1
- Easy to integrate1
- Speed1
- Get started quickly1
- Open source0
- Well designed0
- Flexibilty0
- Productive0
- Awesome0
- Expressive0
- Love it0
- Not JS10
- Context7
- Not fast5
- Don't has many module as in spring1
related Flask posts
One of our top priorities at Pinterest is fostering a safe and trustworthy experience for all Pinners. As Pinterest’s user base and ads business grow, the review volume has been increasing exponentially, and more content types require moderation support. To solve greater engineering and operational challenges at scale, we needed a highly-reliable and performant system to detect, report, evaluate, and act on abusive content and users and so we created Pinqueue.
Pinqueue-3.0 serves as a generic platform for content moderation and human labeling. Under the hood, Pinqueue3.0 is a Flask + React app powered by Pinterest’s very own Gestalt UI framework. On the backend, Pinqueue3.0 heavily relies on PinLater, a Pinterest-built reliable asynchronous job execution system, to handle the requests for enqueueing and action-taking. Using PinLater has significantly strengthened Pinqueue3.0’s overall infra with its capability of processing a massive load of events with configurable retry policies.
Hundreds of millions of people around the world use Pinterest to discover and do what they love, and our job is to protect them from abusive and harmful content. We’re committed to providing an inspirational yet safe experience to all Pinners. Solving trust & safety problems is a joint effort requiring expertise across multiple domains. Pinqueue3.0 not only plays a critical role in responsively taking down unsafe content, it also has become an enabler for future ML/automation initiatives by providing high-quality human labels. Going forward, we will continue to improve the review experience, measure review quality and collaborate with our machine learning teams to solve content moderation beyond manual reviews at an even larger scale.
Hey, so I developed a basic application with Python. But to use it, you need a python interpreter. I want to add a GUI to make it more appealing. What should I choose to develop a GUI? I have very basic skills in front end development (CSS, JavaScript). I am fluent in python. I'm looking for a tool that is easy to use and doesn't require too much code knowledge. I have recently tried out Flask, but it is kinda complicated. Should I stick with it, move to Django, or is there another nice framework to use?
Serverless
- API integration14
- Supports cloud functions for Google, Azure, and IBM7
- Lower cost3
- Auto scale1
- Openwhisk1
related Serverless posts
We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.
To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas
To build #Webapps we decided to use Angular 2 with RxJS
#Devops - GitHub , Travis CI , Terraform , Docker , Serverless
At Epsagon, we use hundreds of AWS Lambda functions, most of them are written in Python, and the Serverless Framework to pack and deploy them. One of the issues we've encountered is the difficulty to package external libraries into the Lambda environment using the Serverless Framework. This limitation is probably by design since the external code your Lambda needs can be usually included with a package manager.
In order to overcome this issue, we've developed a tool, which we also published as open-source (see link below), which automatically packs these libraries using a simple npm package and a YAML configuration file. Support for Node.js, Go, and Java will be available soon.
The GitHub respoitory: https://github.com/epsagon/serverless-package-external
NGINX
- High-performance http server1.4K
- Performance894
- Easy to configure730
- Open source607
- Load balancer530
- Free289
- Scalability288
- Web server226
- Simplicity175
- Easy setup136
- Content caching30
- Web Accelerator21
- Capability15
- Fast14
- High-latency12
- Predictability12
- Reverse Proxy8
- The best of them7
- Supports http/27
- Great Community5
- Lots of Modules5
- Enterprise version5
- High perfomance proxy server4
- Embedded Lua scripting3
- Streaming media delivery3
- Streaming media3
- Reversy Proxy3
- Blash2
- GRPC-Web2
- Lightweight2
- Fast and easy to set up2
- Slim2
- saltstack2
- Virtual hosting1
- Narrow focus. Easy to configure. Fast1
- Along with Redis Cache its the Most superior1
- Ingress controller1
- Advanced features require subscription10
related NGINX posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
We chose AWS because, at the time, it was really the only cloud provider to choose from.
We tend to use their basic building blocks (EC2, ELB, Amazon S3, Amazon RDS) rather than vendor specific components like databases and queuing. We deliberately decided to do this to ensure we could provide multi-cloud support or potentially move to another cloud provider if the offering was better for our customers.
We’ve utilized c3.large nodes for both the Node.js deployment and then for the .NET Core deployment. Both sit as backends behind an nginx instance and are managed using scaling groups in Amazon EC2 sitting behind a standard AWS Elastic Load Balancing (ELB).
While we’re satisfied with AWS, we do review our decision each year and have looked at Azure and Google Cloud offerings.
#CloudHosting #WebServers #CloudStorage #LoadBalancerReverseProxy
Apache HTTP Server
- Web server479
- Most widely-used web server305
- Virtual hosting217
- Fast148
- Ssl support138
- Since 199644
- Asynchronous28
- Robust5
- Proven over many years4
- Mature2
- Perfomance2
- Perfect Support1
- Many available modules0
- Many available modules0
- Hard to set up4
related Apache HTTP Server posts
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
We've been happy with nginx as part of our stack. As an open source web application that folks install on-premise, the configuration system for the webserver is pretty important to us. I have a few complaints (e.g. the configuration syntax for conditionals is a pain), but overall we've found it pretty easy to build a configurable set of options (see link) for how to run Zulip on nginx, both directly and with a remote reverse proxy in front of it, with a minimum of code duplication.
Certainly I've been a lot happier with it than I was working with Apache HTTP Server in past projects.
- Quick and reliable cloud servers647
- Scalability515
- Easy management393
- Low cost277
- Auto-scaling271
- Market leader89
- Backed by amazon80
- Reliable79
- Free tier67
- Easy management, scalability58
- Flexible13
- Easy to Start10
- Widely used9
- Web-scale9
- Elastic9
- Node.js API7
- Industry Standard5
- Lots of configuration options4
- GPU instances2
- Simpler to understand and learn1
- Extremely simple to use1
- Amazing for individuals1
- All the Open Source CLI tools you could want.1
- Ui could use a lot of work13
- High learning curve when compared to PaaS6
- Extremely poor CPU performance3
related Amazon EC2 posts
To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.
Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.
We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.
Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.
Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.
#BigData #AWS #DataScience #DataEngineering
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
- Realtime backend made easy371
- Fast and responsive270
- Easy setup242
- Real-time215
- JSON191
- Free134
- Backed by google128
- Angular adaptor83
- Reliable68
- Great customer support36
- Great documentation32
- Real-time synchronization25
- Mobile friendly21
- Rapid prototyping19
- Great security14
- Automatic scaling12
- Freakingly awesome11
- Super fast development8
- Angularfire is an amazing addition!8
- Chat8
- Firebase hosting6
- Built in user auth/oauth6
- Awesome next-gen backend6
- Ios adaptor6
- Speed of light4
- Very easy to use4
- Great3
- It's made development super fast3
- Brilliant for startups3
- Free hosting2
- Cloud functions2
- JS Offline and Sync suport2
- Low battery consumption2
- .net2
- The concurrent updates create a great experience2
- Push notification2
- I can quickly create static web apps with no backend2
- Great all-round functionality2
- Free authentication solution2
- Easy Reactjs integration1
- Google's support1
- Free SSL1
- CDN & cache out of the box1
- Easy to use1
- Large1
- Faster workflow1
- Serverless1
- Good Free Limits1
- Simple and easy1
- Can become expensive31
- No open source, you depend on external company16
- Scalability is not infinite15
- Not Flexible Enough9
- Cant filter queries7
- Very unstable server3
- No Relational Data3
- Too many errors2
- No offline sync2
related Firebase posts
Hi Otensia! I'd definitely recommend using the skills you've already got and building with JavaScript is a smart way to go these days. Most platform services have JavaScript/Node SDKs or NPM packages, many serverless platforms support Node in case you need to write any backend logic, and JavaScript is incredibly popular - meaning it will be easy to hire for, should you ever need to.
My advice would be "don't reinvent the wheel". If you already have a skill set that will work well to solve the problem at hand, and you don't need it for any other projects, don't spend the time jumping into a new language. If you're looking for an excuse to learn something new, it would be better to invest that time in learning a new platform/tool that compliments your knowledge of JavaScript. For this project, I might recommend using Netlify, Vercel, or Google Firebase to quickly and easily deploy your web app. If you need to add user authentication, there are great examples out there for Firebase Authentication, Auth0, or even Magic (a newcomer on the Auth scene, but very user friendly). All of these services work very well with a JavaScript-based application.
For inboxkitten.com, an opensource disposable email service;
We migrated our serverless workload from Cloud Functions for Firebase to CloudFlare workers, taking advantage of the lower cost and faster-performing edge computing of Cloudflare network. Made possible due to our extremely low CPU and RAM overhead of our serverless functions.
If I were to summarize the limitation of Cloudflare (as oppose to firebase/gcp functions), it would be ...
- <5ms CPU time limit
- Incompatible with express.js
- one script limitation per domain
Limitations our workload is able to conform with (YMMV)
For hosting of static files, we migrated from Firebase to CommonsHost
More details on the trade-off in between both serverless providers is in the article
related Amazon Web Services (AWS) posts
I want to make application like Zomato, #Foodpanda.
Which stack is best for this? As I have expertise in Java and Angular. What is the best stack you will recommend?
Web Micro-service / Mono? Angular / React? Amazon Web Services (AWS) / Google Cloud Platform? DB : SQL or No SQL
Mob Cross-platform: React Native / Flutter
Note: We are a team of 5. what languages do you recommend if I go with microservices?
Thanks
Hello everyone, I would like to start using a cloud service to host my projects, which are web applications. If anyone has enough experience with Microsoft Azure, Amazon Web Services (AWS) or Google Cloud Platform, I would like to know which of these is most recommended to use, depending on the features they have or how used they are. Thank you so much.