StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. Couchbase vs Hadoop

Couchbase vs Hadoop

OverviewDecisionsComparisonAlternatives

Overview

Hadoop
Hadoop
Stacks2.7K
Followers2.3K
Votes56
GitHub Stars15.3K
Forks9.1K
Couchbase
Couchbase
Stacks505
Followers606
Votes110

Couchbase vs Hadoop: What are the differences?

Introduction: When comparing Couchbase and Hadoop, it is essential to understand the key differences between these two popular data management systems.

  1. Data Model: Couchbase is a NoSQL database that uses a key-value pair data model, providing flexibility and scalability for applications handling unstructured data. In contrast, Hadoop is a distributed data processing framework that is designed for storing and processing large volumes of structured and unstructured data in a distributed computing environment.

  2. Architecture: Couchbase follows a master-slave architecture where each node can act as a master or a slave, allowing for high availability and fault tolerance. On the other hand, Hadoop follows a distributed architecture with a master node (NameNode) that manages the file system namespace and data blocks across the DataNodes.

  3. Querying: Couchbase supports querying with N1QL (SQL for JSON), allowing users to query JSON documents using SQL-like syntax. In contrast, Hadoop relies on MapReduce as its primary processing model, which involves writing custom Map and Reduce functions in Java.

  4. Real-time Processing: Couchbase is optimized for real-time processing and low-latency access to data, making it suitable for applications requiring quick data retrieval and processing. Hadoop, on the other hand, is more suitable for batch processing and analyzing large datasets in a parallel and distributed manner.

  5. Use Case: Couchbase is commonly used for real-time web and mobile applications that require fast data access and low latency, such as e-commerce platforms and gaming applications. Hadoop, on the other hand, is used for big data processing, analytics, and data warehousing applications where large volumes of structured and unstructured data need to be processed and analyzed efficiently.

  6. Scalability: Couchbase provides built-in horizontal scalability through its sharding capabilities, allowing users to distribute data across multiple nodes easily. Hadoop also offers horizontal scalability by adding more commodity hardware to the cluster, enabling users to store and process massive amounts of data efficiently.

In Summary, the key differences between Couchbase and Hadoop lie in their data models, architectures, querying methods, real-time processing capabilities, use cases, and scalability options.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Hadoop, Couchbase

Gabriel
Gabriel

CEO at Naologic

Nov 2, 2020

Decided

After using couchbase for over 4 years, we migrated to MongoDB and that was the best decision ever! I'm very disappointed with Couchbase's technical performance. Even though we received enterprise support and were a listed Couchbase Partner, the experience was horrible. With every contact, the sales team was trying to get me on a $7k+ license for access to features all other open source NoSQL databases get for free.

Here's why you should not use Couchbase

Full-text search Queries The full-text search often returns a different number of results if you run the same query multiple types

N1QL queries Configuring the indexes correctly is next to impossible. It's poorly documented and nobody seems to know what to do, even the Couchbase support engineers have no clue what they are doing.

Community support I posted several problems on the forum and I never once received a useful answer

Enterprise support It's very expensive. $7k+. The team constantly tried to get me to buy even though the community edition wasn't working great

Autonomous Operator It's actually just a poorly configured Kubernetes role that no matter what I did, I couldn't get it to work. The support team was useless. Same lack of documentation. If you do get it to work, you need 6 servers at least to meet their minimum requirements.

Couchbase cloud Typical for Couchbase, the user experience is awful and I could never get it to work.

Minimum requirements The minimum requirements in production are 6 servers. On AWS the calculated monthly cost would be ~$600. We achieved better performance using a $16 MongoDB instance on the Mongo Atlas Cloud

writing queries is a nightmare While N1QL is similar to SQL and it's easier to write because of the familiarity, that isn't entirely true. The "smart index" that Couchbase advertises is not smart at all. Creating an index with 5 fields, and only using 4 of them won't result in Couchbase using the same index, so you have to create a new one.

Couchbase UI The UI that comes with every database deployment is full of bugs, barely functional and the developer experience is poor. When I asked Couchbase about it, they basically said they don't care because real developers use SQL directly from code

Consumes too much RAM Couchbase is shipped with a smaller Memcached instance to handle the in-memory cache. Memcached ends up using 8 GB of RAM for 5000 documents! I'm not kidding! We had less than 5000 docs on a Couchbase instance and less than 20 indexes and RAM consumption was always over 8 GB

Memory allocations are useless I asked the Couchbase team a question: If a bucket has 1 GB allocated, what happens when I have more than 1GB stored? Does it overflow? Does it cache somewhere? Do I get an error? I always received the same answer: If you buy the Couchbase enterprise then we can guide you.

247k views247k
Comments
Gabriel
Gabriel

CEO at Naologic

Jan 2, 2020

DecidedonCouchDBCouchDBCouchbaseCouchbaseMemcachedMemcached

We implemented our first large scale EPR application from naologic.com using CouchDB .

Very fast, replication works great, doesn't consume much RAM, queries are blazing fast but we found a problem: the queries were very hard to write, it took a long time to figure out the API, we had to go and write our own @nodejs library to make it work properly.

It lost most of its support. Since then, we migrated to Couchbase and the learning curve was steep but all worth it. Memcached indexing out of the box, full text search works great.

592k views592k
Comments
Mike
Mike

Mar 20, 2020

Needs advice

We Have thousands of .pdf docs generated from the same form but with lots of variability. We need to extract data from open text and more important - from tables inside the docs. The output of Couchbase/Mongo will be one row per document for backend processing. ADOBE renders the tables in an unusable form.

241k views241k
Comments

Detailed Comparison

Hadoop
Hadoop
Couchbase
Couchbase

The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.

Developed as an alternative to traditionally inflexible SQL databases, the Couchbase NoSQL database is built on an open source foundation and architected to help developers solve real-world problems and meet high scalability demands.

-
JSON document database; N1QL (SQL-like query language); Secondary Indexing; Full-Text Indexing; Eventing/Triggers; Real-Time Analytics; Mobile Synchronization for offline support; Autonomous Operator for Kubernetes and OpenShift
Statistics
GitHub Stars
15.3K
GitHub Stars
-
GitHub Forks
9.1K
GitHub Forks
-
Stacks
2.7K
Stacks
505
Followers
2.3K
Followers
606
Votes
56
Votes
110
Pros & Cons
Pros
  • 39
    Great ecosystem
  • 11
    One stack to rule them all
  • 4
    Great load balancer
  • 1
    Java syntax
  • 1
    Amazon aws
Pros
  • 18
    High performance
  • 18
    Flexible data model, easy scalability, extremely fast
  • 9
    Mobile app support
  • 7
    You can query it with Ansi-92 SQL
  • 6
    All nodes can be read/write
Cons
  • 3
    Terrible query language
Integrations
No integrations available
Kafka
Kafka
Elasticsearch
Elasticsearch
Kubernetes
Kubernetes
Apache Spark
Apache Spark

What are some alternatives to Hadoop, Couchbase?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase