Alternatives to Netflix OSS logo

Alternatives to Netflix OSS

Kubernetes, Istio, Spring Cloud, Docker, and Cloud Foundry are the most popular alternatives and competitors to Netflix OSS.
68
115
+ 1
0

What is Netflix OSS and what are its top alternatives?

It provides tools and services to get the most out of your (big) data. It also provides runtime containers, libraries and services that power microservices.
Netflix OSS is a tool in the Container Tools category of a tech stack.

Top Alternatives to Netflix OSS

  • Kubernetes
    Kubernetes

    Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...

  • Istio
    Istio

    Istio is an open platform for providing a uniform way to integrate microservices, manage traffic flow across microservices, enforce policies and aggregate telemetry data. Istio's control plane provides an abstraction layer over the underlying cluster management platform, such as Kubernetes, Mesos, etc. ...

  • Spring Cloud
    Spring Cloud

    It provides tools for developers to quickly build some of the common patterns in distributed systems. ...

  • Docker
    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...

  • Cloud Foundry
    Cloud Foundry

    Cloud Foundry is an open platform as a service (PaaS) that provides a choice of clouds, developer frameworks, and application services. Cloud Foundry makes it faster and easier to build, test, deploy, and scale applications. ...

  • Docker Compose
    Docker Compose

    With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running. ...

  • Helm
    Helm

    Helm is the best way to find, share, and use software built for Kubernetes.

  • Rancher
    Rancher

    Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform. ...

Netflix OSS alternatives & related posts

Kubernetes logo

Kubernetes

44.7K
38.4K
634
Manage a cluster of Linux containers as a single system to accelerate Dev and simplify Ops
44.7K
38.4K
+ 1
634
PROS OF KUBERNETES
  • 161
    Leading docker container management solution
  • 126
    Simple and powerful
  • 102
    Open source
  • 75
    Backed by google
  • 56
    The right abstractions
  • 24
    Scale services
  • 19
    Replication controller
  • 9
    Permission managment
  • 7
    Simple
  • 7
    Supports autoscaling
  • 6
    Cheap
  • 4
    Self-healing
  • 4
    No cloud platform lock-in
  • 4
    Reliable
  • 3
    Open, powerful, stable
  • 3
    Scalable
  • 3
    Quick cloud setup
  • 3
    Promotes modern/good infrascture practice
  • 2
    Backed by Red Hat
  • 2
    Cloud Agnostic
  • 2
    Runs on azure
  • 2
    Custom and extensibility
  • 2
    Captain of Container Ship
  • 2
    A self healing environment with rich metadata
  • 1
    Golang
  • 1
    Easy setup
  • 1
    Everything of CaaS
  • 1
    Sfg
  • 1
    Expandable
  • 1
    Gke
CONS OF KUBERNETES
  • 15
    Poor workflow for development
  • 13
    Steep learning curve
  • 7
    Orchestrates only infrastructure
  • 4
    High resource requirements for on-prem clusters
  • 1
    Additional vendor lock-in (Docker)
  • 1
    Additional Technology Overhead
  • 1
    More moving parts to secure
  • 1
    Too heavy for simple systems

related Kubernetes posts

Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 40 upvotes · 4.9M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Yshay Yaacobi

Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

See more
Istio logo

Istio

698
1.2K
44
Open platform to connect, manage, and secure microservices, by Google, IBM, and Lyft
698
1.2K
+ 1
44
PROS OF ISTIO
  • 13
    Zero code for logging and monitoring
  • 8
    Service Mesh
  • 7
    Great flexibility
  • 4
    Ingress controller
  • 3
    Resiliency
  • 3
    Easy integration with Kubernetes and Docker
  • 3
    Full Security
  • 3
    Powerful authorization mechanisms
CONS OF ISTIO
  • 14
    Performance

related Istio posts

Anas MOKDAD
Shared insights
on
KongKongIstioIstio

As for the new support of service mesh pattern by Kong, I wonder how does it compare to Istio?

See more
Spring Cloud logo

Spring Cloud

816
664
0
Spring helps development teams everywhere build simple, portable,fast and flexible JVM-based systems and applications.
816
664
+ 1
0
PROS OF SPRING CLOUD
    Be the first to leave a pro
    CONS OF SPRING CLOUD
      Be the first to leave a con

      related Spring Cloud posts

      Spring-Boot Spring Cloud Elasticsearch MySQL Redis RabbitMQ Kafka MongoDB GitHub Linux IntelliJ IDEA

      See more
      Docker logo

      Docker

      133.1K
      105.1K
      3.8K
      Enterprise Container Platform for High-Velocity Innovation.
      133.1K
      105.1K
      + 1
      3.8K
      PROS OF DOCKER
      • 823
        Rapid integration and build up
      • 688
        Isolation
      • 518
        Open source
      • 505
        Testa­bil­i­ty and re­pro­ducibil­i­ty
      • 459
        Lightweight
      • 217
        Standardization
      • 184
        Scalable
      • 105
        Upgrading / down­grad­ing / ap­pli­ca­tion versions
      • 87
        Security
      • 84
        Private paas environments
      • 33
        Portability
      • 25
        Limit resource usage
      • 16
        Game changer
      • 15
        I love the way docker has changed virtualization
      • 13
        Fast
      • 11
        Concurrency
      • 7
        Docker's Compose tools
      • 5
        Easy setup
      • 5
        Fast and Portable
      • 4
        Because its fun
      • 3
        Makes shipping to production very simple
      • 2
        It's dope
      • 2
        Highly useful
      • 1
        Very easy to setup integrate and build
      • 1
        Package the environment with the application
      • 1
        Does a nice job hogging memory
      • 1
        Open source and highly configurable
      • 1
        Simplicity, isolation, resource effective
      • 1
        MacOS support FAKE
      • 1
        Its cool
      • 1
        Docker hub for the FTW
      • 1
        HIgh Throughput
      CONS OF DOCKER
      • 8
        New versions == broken features
      • 6
        Unreliable networking
      • 6
        Documentation not always in sync
      • 4
        Moves quickly
      • 3
        Not Secure

      related Docker posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 29 upvotes · 4.2M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Tymoteusz Paul
      Devops guy at X20X Development LTD · | 23 upvotes · 5.1M views

      Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

      It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

      I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

      We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

      If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

      The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

      Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

      See more
      Cloud Foundry logo

      Cloud Foundry

      164
      306
      5
      Deploy and scale applications in seconds on your choice of private or public cloud
      164
      306
      + 1
      5
      PROS OF CLOUD FOUNDRY
      • 2
        Perfectly aligned with springboot
      • 1
        Free distributed tracing (zipkin)
      • 1
        Application health management
      • 1
        Free service discovery (Eureka)
      CONS OF CLOUD FOUNDRY
        Be the first to leave a con

        related Cloud Foundry posts

        Docker Compose logo

        Docker Compose

        16.8K
        12.5K
        480
        Define and run multi-container applications with Docker
        16.8K
        12.5K
        + 1
        480
        PROS OF DOCKER COMPOSE
        • 121
          Multi-container descriptor
        • 109
          Fast development environment setup
        • 76
          Easy linking of containers
        • 66
          Simple yaml configuration
        • 58
          Easy setup
        • 15
          Yml or yaml format
        • 11
          Use Standard Docker API
        • 7
          Open source
        • 4
          Can choose Discovery Backend
        • 4
          Go from template to application in minutes
        • 3
          Kubernetes integration
        • 2
          Scalable
        • 2
          Easy configuration
        • 2
          Quick and easy
        CONS OF DOCKER COMPOSE
        • 9
          Tied to single machine
        • 5
          Still very volatile, changing syntax often

        related Docker Compose posts

        Simon Reymann
        Senior Fullstack Developer at QUANTUSflow Software GmbH · | 29 upvotes · 4.2M views

        Our whole DevOps stack consists of the following tools:

        • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
        • Respectively Git as revision control system
        • SourceTree as Git GUI
        • Visual Studio Code as IDE
        • CircleCI for continuous integration (automatize development process)
        • Prettier / TSLint / ESLint as code linter
        • SonarQube as quality gate
        • Docker as container management (incl. Docker Compose for multi-container application management)
        • VirtualBox for operating system simulation tests
        • Kubernetes as cluster management for docker containers
        • Heroku for deploying in test environments
        • nginx as web server (preferably used as facade server in production environment)
        • SSLMate (using OpenSSL) for certificate management
        • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
        • PostgreSQL as preferred database system
        • Redis as preferred in-memory database/store (great for caching)

        The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

        • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
        • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
        • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
        • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
        • Scalability: All-in-one framework for distributed systems.
        • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
        See more

        Recently I have been working on an open source stack to help people consolidate their personal health data in a single database so that AI and analytics apps can be run against it to find personalized treatments. We chose to go with a #containerized approach leveraging Docker #containers with a local development environment setup with Docker Compose and nginx for container routing. For the production environment we chose to pull code from GitHub and build/push images using Jenkins and using Kubernetes to deploy to Amazon EC2.

        We also implemented a dashboard app to handle user authentication/authorization, as well as a custom SSO server that runs on Heroku which allows experts to easily visit more than one instance without having to login repeatedly. The #Backend was implemented using my favorite #Stack which consists of FeathersJS on top of Node.js and ExpressJS with PostgreSQL as the main database. The #Frontend was implemented using React, Redux.js, Semantic UI React and the FeathersJS client. Though testing was light on this project, we chose to use AVA as well as ESLint to keep the codebase clean and consistent.

        See more
        Helm logo

        Helm

        1.1K
        730
        13
        The Kubernetes Package Manager
        1.1K
        730
        + 1
        13
        PROS OF HELM
        • 6
          Infrastructure as code
        • 4
          Open source
        • 2
          Easy setup
        • 1
          Testa­bil­i­ty and re­pro­ducibil­i­ty
        CONS OF HELM
          Be the first to leave a con

          related Helm posts

          Emanuel Evans
          Senior Architect at Rainforest QA · | 18 upvotes · 926.2K views

          We recently moved our main applications from Heroku to Kubernetes . The 3 main driving factors behind the switch were scalability (database size limits), security (the inability to set up PostgreSQL instances in private networks), and costs (GCP is cheaper for raw computing resources).

          We prefer using managed services, so we are using Google Kubernetes Engine with Google Cloud SQL for PostgreSQL for our PostgreSQL databases and Google Cloud Memorystore for Redis . For our CI/CD pipeline, we are using CircleCI and Google Cloud Build to deploy applications managed with Helm . The new infrastructure is managed with Terraform .

          Read the blog post to go more in depth.

          See more
          Ido Shamun
          at The Elegant Monkeys · | 7 upvotes · 307.3K views

          Kubernetes powers our #backend services as it is very easy in terms of #devops (the managed version). We deploy everything using @helm charts as it provides us to manage deployments the same way we manage our code on GitHub . On every commit a CircleCI job is triggered to run the tests, build Docker images and deploy them to the registry. Finally on every master commit CircleCI also deploys the relevant service using Helm chart to our Kubernetes cluster

          See more
          Rancher logo

          Rancher

          847
          1.3K
          644
          Open Source Platform for Running a Private Container Service
          847
          1.3K
          + 1
          644
          PROS OF RANCHER
          • 103
            Easy to use
          • 79
            Open source and totally free
          • 63
            Multi-host docker-compose support
          • 58
            Load balancing and health check included
          • 58
            Simple
          • 44
            Rolling upgrades, green/blue upgrades feature
          • 42
            Dns and service discovery out-of-the-box
          • 37
            Only requires docker
          • 34
            Multitenant and permission management
          • 29
            Easy to use and feature rich
          • 11
            Cross cloud compatible
          • 11
            Does everything needed for a docker infrastructure
          • 8
            Simple and powerful
          • 8
            Next-gen platform
          • 7
            Very Docker-friendly
          • 6
            Support Kubernetes and Swarm
          • 6
            Application catalogs with stack templates (wizards)
          • 6
            Supports Apache Mesos, Docker Swarm, and Kubernetes
          • 6
            Rolling and blue/green upgrades deployments
          • 6
            High Availability service: keeps your app up 24/7
          • 5
            Easy to use service catalog
          • 4
            Very intuitive UI
          • 4
            IaaS-vendor independent, supports hybrid/multi-cloud
          • 4
            Awesome support
          • 3
            Scalable
          • 2
            Requires less infrastructure requirements
          CONS OF RANCHER
          • 10
            Hosting Rancher can be complicated

          related Rancher posts