Alternatives to Octant logo

Alternatives to Octant

Rancher, Lens, Kubernetes, Docker Compose, and Helm are the most popular alternatives and competitors to Octant.
4
18
+ 1
0

What is Octant and what are its top alternatives?

A tool for developers to understand how applications run on a Kubernetes cluster. It aims to be part of the developer's toolkit for gaining insight and approaching complexity found in Kubernetes.
Octant is a tool in the Container Tools category of a tech stack.
Octant is an open source tool with 4.7K GitHub stars and 324 GitHub forks. Here鈥檚 a link to Octant's open source repository on GitHub

Top Alternatives to Octant

  • Rancher

    Rancher

    Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform. ...

  • Lens

    Lens

    It is the only IDE you鈥檒l ever need to take control of your Kubernetes clusters. It is a standalone application for MacOS, Windows and Linux operating systems. It is open source and free. ...

  • Kubernetes

    Kubernetes

    Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...

  • Docker Compose

    Docker Compose

    With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running. ...

  • Helm

    Helm

    Helm is the best way to find, share, and use software built for Kubernetes.

  • Docker Swarm

    Docker Swarm

    Swarm serves the standard Docker API, so any tool which already communicates with a Docker daemon can use Swarm to transparently scale to multiple hosts: Dokku, Compose, Krane, Deis, DockerUI, Shipyard, Drone, Jenkins... and, of course, the Docker client itself. ...

  • Spring Cloud

    Spring Cloud

    Spring helps development teams everywhere build simple, portable, fast and flexible JVM-based systems and applications. ...

  • Docker Machine

    Docker Machine

    Machine lets you create Docker hosts on your computer, on cloud providers, and inside your own data center. It creates servers, installs Docker on them, then configures the Docker client to talk to them. ...

Octant alternatives & related posts

Lens logo

Lens

16
32
0
Open-source IDE to control your Kubernetes clusters
16
32
+ 1
0
PROS OF LENS
    No pros available
    CONS OF LENS
      No cons available

      related Lens posts

      related Kubernetes posts

      Conor Myhrvold
      Tech Brand Mgr, Office of CTO at Uber | 35 upvotes 路 3.2M views

      How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

      Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

      Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

      https://eng.uber.com/distributed-tracing/

      (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

      Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

      See more
      Yshay Yaacobi

      Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

      Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

      After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

      See more

      related Docker Compose posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH | 27 upvotes 路 1.8M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more

      Recently I have been working on an open source stack to help people consolidate their personal health data in a single database so that AI and analytics apps can be run against it to find personalized treatments. We chose to go with a #containerized approach leveraging Docker #containers with a local development environment setup with Docker Compose and nginx for container routing. For the production environment we chose to pull code from GitHub and build/push images using Jenkins and using Kubernetes to deploy to Amazon EC2.

      We also implemented a dashboard app to handle user authentication/authorization, as well as a custom SSO server that runs on Heroku which allows experts to easily visit more than one instance without having to login repeatedly. The #Backend was implemented using my favorite #Stack which consists of FeathersJS on top of Node.js and ExpressJS with PostgreSQL as the main database. The #Frontend was implemented using React, Redux.js, Semantic UI React and the FeathersJS client. Though testing was light on this project, we chose to use AVA as well as ESLint to keep the codebase clean and consistent.

      See more
      Helm logo

      Helm

      692
      471
      8
      The Kubernetes Package Manager
      692
      471
      + 1
      8

      related Helm posts

      Emanuel Evans
      Senior Architect at Rainforest QA | 13 upvotes 路 480.8K views

      We recently moved our main applications from Heroku to Kubernetes . The 3 main driving factors behind the switch were scalability (database size limits), security (the inability to set up PostgreSQL instances in private networks), and costs (GCP is cheaper for raw computing resources).

      We prefer using managed services, so we are using Google Kubernetes Engine with Google Cloud SQL for PostgreSQL for our PostgreSQL databases and Google Cloud Memorystore for Redis . For our CI/CD pipeline, we are using CircleCI and Google Cloud Build to deploy applications managed with Helm . The new infrastructure is managed with Terraform .

      Read the blog post to go more in depth.

      See more
      Ido Shamun
      at The Elegant Monkeys | 6 upvotes 路 267.1K views

      Kubernetes powers our #backend services as it is very easy in terms of #devops (the managed version). We deploy everything using @helm charts as it provides us to manage deployments the same way we manage our code on GitHub . On every commit a CircleCI job is triggered to run the tests, build Docker images and deploy them to the registry. Finally on every master commit CircleCI also deploys the relevant service using Helm chart to our Kubernetes cluster

      See more
      Docker Swarm logo

      Docker Swarm

      626
      739
      252
      Native clustering for Docker. Turn a pool of Docker hosts into a single, virtual host.
      626
      739
      + 1
      252

      related Docker Swarm posts

      Yshay Yaacobi

      Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

      Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

      After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

      See more
      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH | 27 upvotes 路 1.8M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Spring Cloud logo

      Spring Cloud

      547
      489
      0
      Spring helps development teams everywhere build simple, portable,fast and flexible JVM-based systems and applications.
      547
      489
      + 1
      0
      PROS OF SPRING CLOUD
        No pros available
        CONS OF SPRING CLOUD
          No cons available

          related Spring Cloud posts

          Spring-Boot Spring Cloud Elasticsearch MySQL Redis RabbitMQ Kafka MongoDB GitHub Linux IntelliJ IDEA

          See more
          Docker Machine logo

          Docker Machine

          405
          460
          12
          Machine management for a container-centric world
          405
          460
          + 1
          12
          PROS OF DOCKER MACHINE
          CONS OF DOCKER MACHINE
            No cons available

            related Docker Machine posts