StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Background Jobs
  4. Message Queue
  5. AWS Lambda vs ActiveMQ

AWS Lambda vs ActiveMQ

OverviewDecisionsComparisonAlternatives

Overview

ActiveMQ
ActiveMQ
Stacks879
Followers1.3K
Votes77
GitHub Stars2.4K
Forks1.5K
AWS Lambda
AWS Lambda
Stacks26.0K
Followers18.8K
Votes432

AWS Lambda vs ActiveMQ: What are the differences?

Introduction

In the cloud computing landscape, AWS Lambda and ActiveMQ are two commonly used services that serve different purposes. Understanding their key differences can help in making informed decisions when deciding which service to use for specific use cases.

  1. Functionality: AWS Lambda is a serverless computing service that allows users to run code without provisioning or managing servers, making it more suitable for event-driven scenarios or small-scale applications. On the other hand, ActiveMQ is a message broker that enables communication between distributed systems by allowing them to exchange messages asynchronously, making it more suitable for decoupling applications and integrating disparate systems.

  2. Use Cases: AWS Lambda is commonly used for handling short-lived compute tasks in response to events, such as image processing, data validation, or real-time report generation. ActiveMQ, on the other hand, is ideal for scenarios where reliable messaging and guaranteed delivery of messages are crucial, such as in financial transactions, order processing, or inter-application communication.

  3. Scalability: AWS Lambda automatically scales based on the incoming traffic, allowing users to pay only for the resources their code uses. ActiveMQ requires users to provision resources based on expected message volume and throughput, making it more predictable but potentially less cost-effective in dynamic environments.

  4. Deployment: AWS Lambda functions are deployed and managed within the AWS infrastructure, with built-in monitoring and logging capabilities. ActiveMQ requires separate deployment and management, either on-premises or in the cloud, with additional configuration for monitoring and logging, potentially adding complexity to the overall setup.

  5. Pricing Model: AWS Lambda follows a pay-as-you-go pricing model, where users are charged based on the number of requests and execution time. ActiveMQ typically involves upfront configuration and setup costs, along with ongoing maintenance expenses, making it more suitable for long-running applications that require persistent messaging capabilities.

In Summary, understanding the key differences between AWS Lambda and ActiveMQ in terms of functionality, use cases, scalability, deployment, and pricing can help organizations choose the most suitable service for their specific requirements.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on ActiveMQ, AWS Lambda

Tim
Tim

CTO at Checkly Inc.

Sep 18, 2019

Needs adviceonHerokuHerokuAWS LambdaAWS Lambda

When adding a new feature to Checkly rearchitecting some older piece, I tend to pick Heroku for rolling it out. But not always, because sometimes I pick AWS Lambda . The short story:

  • Developer Experience trumps everything.
  • AWS Lambda is cheap. Up to a limit though. This impact not only your wallet.
  • If you need geographic spread, AWS is lonely at the top.

The setup

Recently, I was doing a brainstorm at a startup here in Berlin on the future of their infrastructure. They were ready to move on from their initial, almost 100% Ec2 + Chef based setup. Everything was on the table. But we crossed out a lot quite quickly:

  • Pure, uncut, self hosted Kubernetes — way too much complexity
  • Managed Kubernetes in various flavors — still too much complexity
  • Zeit — Maybe, but no Docker support
  • Elastic Beanstalk — Maybe, bit old but does the job
  • Heroku
  • Lambda

It became clear a mix of PaaS and FaaS was the way to go. What a surprise! That is exactly what I use for Checkly! But when do you pick which model?

I chopped that question up into the following categories:

  • Developer Experience / DX 🤓
  • Ops Experience / OX 🐂 (?)
  • Cost 💵
  • Lock in 🔐

Read the full post linked below for all details

357k views357k
Comments
Mark
Mark

Nov 2, 2020

Needs adviceonMicrosoft AzureMicrosoft Azure

Need advice on what platform, systems and tools to use.

Evaluating whether to start a new digital business for which we will need to build a website that handles all traffic. Website only right now. May add smartphone apps later. No desktop app will ever be added. Website to serve various countries and languages. B2B and B2C type customers. Need to handle heavy traffic, be low cost, and scale well.

We are open to either build it on AWS or on Microsoft Azure.

Apologies if I'm leaving out some info. My first post. :) Thanks in advance!

133k views133k
Comments

Detailed Comparison

ActiveMQ
ActiveMQ
AWS Lambda
AWS Lambda

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

AWS Lambda is a compute service that runs your code in response to events and automatically manages the underlying compute resources for you. You can use AWS Lambda to extend other AWS services with custom logic, or create your own back-end services that operate at AWS scale, performance, and security.

Protect your data & Balance your Load; Easy enterprise integration patterns; Flexible deployment
Extend other AWS services with custom logic;Build custom back-end services;Completely Automated Administration;Built-in Fault Tolerance;Automatic Scaling;Integrated Security Model;Bring Your Own Code;Pay Per Use;Flexible Resource Model
Statistics
GitHub Stars
2.4K
GitHub Stars
-
GitHub Forks
1.5K
GitHub Forks
-
Stacks
879
Stacks
26.0K
Followers
1.3K
Followers
18.8K
Votes
77
Votes
432
Pros & Cons
Pros
  • 18
    Easy to use
  • 14
    Open source
  • 13
    Efficient
  • 10
    JMS compliant
  • 6
    High Availability
Cons
  • 1
    Low resilience to exceptions and interruptions
  • 1
    ONLY Vertically Scalable
  • 1
    Support
  • 1
    Difficult to scale
Pros
  • 129
    No infrastructure
  • 83
    Cheap
  • 70
    Quick
  • 59
    Stateless
  • 47
    No deploy, no server, great sleep
Cons
  • 7
    Cant execute ruby or go
  • 3
    Compute time limited
  • 1
    Can't execute PHP w/o significant effort

What are some alternatives to ActiveMQ, AWS Lambda?

Kafka

Kafka

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

RabbitMQ

RabbitMQ

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

Amazon SQS

Amazon SQS

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

NSQ

NSQ

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Azure Functions

Azure Functions

Azure Functions is an event driven, compute-on-demand experience that extends the existing Azure application platform with capabilities to implement code triggered by events occurring in virtually any Azure or 3rd party service as well as on-premises systems.

Google Cloud Run

Google Cloud Run

A managed compute platform that enables you to run stateless containers that are invocable via HTTP requests. It's serverless by abstracting away all infrastructure management.

Gearman

Gearman

Gearman allows you to do work in parallel, to load balance processing, and to call functions between languages. It can be used in a variety of applications, from high-availability web sites to the transport of database replication events.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase